Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special horseshoes measure acceleration in horses

09.07.2008
The most frequent injuries that horses suffer are derived from pressure exerted by riders, and knowing which forces are involved when horses move can prove highly informative when considering treatment for such injuries.

A team of scientists from Wageningen University, led by Professor Johan van Leeuwen, has carried out studies both into the advantages of different rider techniques in reducing injury risk, and into the benefits of a method of equine rehabilitation.

By using computer modelling and specialist horseshoes to measure acceleration, these investigations suggest that aqua-training rehabilitation is beneficial due to lower impact accelerations. However, rising trot may not be as advantageous as previously thought. Results will be presented on Monday 7th July at the Society for Experimental Biology's Annual Meeting in Marseille [Session A3].

Rehabilitation after equine joint and muscle injuries, including those of the back, shoulders and legs, now often involves 'aquatraining', whereby horses move in water-filled treadmills. Due to buoyancy, this treatment is currently thought to reduce weight-bearing forces, which can otherwise have detrimental effects on joints, but to date there has been a virtual absence of studies into the magnitude of these benefits.

... more about:
»acceleration »injuries »trot

Professor van Leeuwen's team has used special horseshoes to measure accelerations of horses undergoing aquatraining, as well as walking normally, which provide a good indication of the impact forces involved. "Our results, based on data from seven horses, show the accelerations are significantly lower during 'aquatic walking'," he asserts. "We will be carrying out further experiments to confirm these results, but at this stage, it appears that aquatraining may indeed be beneficial for rehabilitation after joint injury."

Professor van Leeuwen and his colleagues have also used specialised force gauges to measure the strain placed on the backs of horses through the saddle and stirrups. These measurements have been combined with the output of computer models to provide insight into the mechanisms that a rider can use to respond to the movements of a horse, and to prevent injury.

"We have given particular attention to the comparison of sitting and rising trot, as it is broadly accepted in the equestrian world that rising trot imposes less loading on the back of the horse," Professor van Leeuwen explains. "However, our results have not been able to confirm the belief that rising trot is mechanically less demanding for the horse. Looking at back extension, which is most often related to back injuries, we found that the extension of the back is similar in rising and sitting trot."

Holly Astley | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: acceleration injuries trot

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>