Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Working to Decode TB

08.07.2008
Among those trying to decipher the origins and trajectory of Mycobacterium tuberculosis, the bacteria responsible for TB, are three Arizona State University researchers who are trying to establish a credible evolutionary timeline for TB. Their research suggests that the disease migrated from humans to cattle – not the reverse, as has long been assumed.

Tuberculosis may call to mind Old West consumptives and early 20th-century sanatoriums, yet according to the World Health Organization, the disease took the lives of more than 1.5 million people worldwide in 2006.

In the United States alone, thousands of new cases are reported annually making TB an enduring menace. The need to better understand this disease is becoming critical, note researchers at Arizona State University, especially with the emergence of antibiotic-resistant strains and increasing globalization spurring pathogen migration.

Among those trying to decipher the origins and trajectory of Mycobacterium tuberculosis, the bacteria responsible for TB, are three researchers in ASU’s College of Liberal Arts and Sciences. Graduate student Luz-Andrea “Lucha” Pfister and associate professor Anne Stone in ASU’s School of Human Evolution and Social Change, and Michael Rosenberg, an assistant professor in the School of Life Sciences, are trying to establish a credible evolutionary timeline for TB.

... more about:
»Disease »Pathogen »Tuberculosis »bacteria

Their research suggests that the disease migrated from humans to cattle – not the reverse, as has long been assumed. The research estimates that the evolutionary leap took place prior to the domestication of cows – more than 113,000 years ago – indicating M. tuberculosis is a much older pathogen than previously believed.

This outcome supports that of the French Pasteur Institute’s Cristina Gutierrez, an evolutionary mycobacteriologist whose work first cast doubt on the cattle-to-human TB link and its date range. Gutierrez calls the findings of Pfister’s team confirmation of TB’s ancient origins and human-cattle transmission.

This summer, Pfister presented the results of the group’s research at the annual meeting of the Society of Molecular Biology and Evolution, in Barcelona. She also presented during the April assembly of the American Association of Physical Anthropologists and subsequently saw the group’s research reported on in the journal Science.

With no fossil evidence to consult, studying the deep history of bacteria has only recently become possible. Genomics holds the key. Using DNA, Pfister, Stone and Rosenberg are making inroads into calibrating the watershed moments in TB’s development, such as when it expanded in the human population. Through their work, they also plan to address the biogeography of the disease and what types of TB ancient people had relative to modern strains.

Why are scientists interested in TB’s status thousands of years ago? Pfister puts the research into perspective: “An accurate timeframe can help us learn about the development between host and pathogen. It can aid in understanding the disease and the way it evolves, how it creates new strains to stay alive.”

As Stone is quick to point out, “The data we generate can be used by clinicians to study this disease and formulate appropriate treatments. Our work is historical, but the implications are far-reaching.”

One of the primary goals is to calculate a meaningful mutation rate. The established model for bacteria was developed in the 1980s in regard to E. coli. Pfister notes, “This mutation rate has been used as the universal standard, but that is not feasible. TB and E. coli are very different. Bacteria may evolve at different rates. We cannot say that one model applies to all.”

Pfister, Stone and Rosenberg worked with 108 genes, compared to just over 20 genes used in the E. coli formula. As a result, they were able to delve deeper than Gutierrez at the time she conducted her ground-breaking research. “The Pasteur Institute looked at a small piece of the genome; the full genome gives a much better idea,” says Stone, alluding to the team’s comprehensive approach and its possibilities.

“The work we have done so far is only one aspect of a bigger project,” explains Rosenberg. “There are different directions we want to go with it. Of course, the main target is to get a better estimate of the rate of mycobacterium evolution, but a lot of things branch off from that.”

Rosenberg, a computational evolutionary biologist who designed the program to analyze many of the sequences, says the project shows that “as we get more data and complete sequencing of full genomes, we find new ways of looking at issues, which can do away with assumptions. An example is the belief of cow-to-human transmission of TB. That was a long-held notion, but it was just an assumption.”

“It is the evolutionary way of thinking that has caused us to explore this issue from new and varied angles,” states Pfister. “An evolutionary perspective is also important in a contemporary sense because our species’ population is growing dramatically. Soon we will reach carrying capacity. We will start producing pathogens and opportunities for problems at escalating rates.”

Pfister was born and raised in Chile where TB ran rampant before being subdued by aggressive government health programs. However, as in other parts of the world, Chile is presently facing a resurgence of tuberculosis. Still, Pfister is hopeful that someday the deadly pathogen will be rendered obsolete. She enthuses, “We now have lots of gene data. We can count mutations. There is so much evidence out there; we just need to link it all. If we start looking at the history and essence of TB in a holistic, transdisciplinary way, we can see the big picture and find solutions.”

SOURCES:
Anne Stone, acstone@asu.edu
480-727-6310
Luz-Andrea “Lucha” Pfister, luchapfister@asu.edu
Michael Rosenberg, msr@asu.edu
480-965-1578

Rebecca Howe | Newswise Science News
Further information:
http://www.asu.edu

Further reports about: Disease Pathogen Tuberculosis bacteria

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>