Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Smart' materials get smarter with ability to better control shape and size

08.07.2008
A dynamic way to alter the shape and size of microscopic three-dimensional structures built out of proteins has been developed by biological chemist Jason Shear and his former graduate student Bryan Kaehr at The University of Texas at Austin.

Shear and Kaehr fabricated a variety of detailed three-dimensional microstructures, known as hydrogels, and have shown that they can expand and bend the hydrogels by altering the chemistry of the environment in which they were built.

Hydrogels have been in development over the last couple of decades and are being used as parts in biology-based microdevices and medical diagnostic technologies, for drug delivery, and in tissue engineering. But the future utility of these "smart materials" relies on finding better ways to control their conformation.

Shear and Kaehr's work lays the foundation for more precise control of hydrogels. Among many applications, Shear says they will have the ability to better grow bacteria with the aim of understanding disease.

... more about:
»Hydrogel »Ion »Kaehr »Shear »bacteria »structure

"This provides a significant new way of interacting with cultured cells," says Shear, an associate professor of chemistry and biochemistry. "The microstructures can be used to capture individual cells, and once isolated, clonal colonies of those cells can be grown and studied."

Their research appears in a paper published July 1 in Proceedings of the National Academy of Sciences.

As a proof of concept, the researchers built a rectangular house-like structure with a roof in which they trapped and then released E. coli bacteria. The bacteria blundered into the house through a funnel shaped door, where they found themselves trapped in a ring-shaped chamber. The funnel made it difficult to get out of the house.

Once inside, "they moved around the space like they were running around a racetrack," says Shear.

When the researchers increased the pH of the cell culture, the chamber changed volume, causing the house to pop off its foundation and release the bacteria.

By increasing or decreasing the volume of microstructures dynamically, Shear hopes to be able to better understand a phenomenon known as quorum sensing, where bacteria coordinate their gene expression according to the density of their population. Quorum sensing is important in the pathology of some disease-causing bacteria, such as Pseudomonas aeruginosa.

The hydrogels created by Shear and Kaehr are made of protein molecules that have been chemically bound together using a focused laser beam, a process known as photofabrication.

The laser causes amino acid side chains to link en masse and this builds a solid protein matrix. The protein scaffold is built layer by layer, much like a raster scanner.

"It's a little bit like a three-dimensional Etch-a-Sketch," says Shear.

Other high resolution structures the researchers developed include tethers that connect microspheres to surfaces, flower- and fern-like structures, and micro-hands that are less than a quarter the diameter of a hair, pinky to thumb.

Experimenting with various chemical changes, Shear and Kaehr show that changing pH caused hydrogel bands to bow out at specific points along their length and caused other shapes, like the micro-hands and bacterial chamber, to expand.

Altering ion concentrations caused the fern-like structures to coil and unfurl like fiddleheads emerging from the ground in spring. Adding ions caused contraction of the tether holding the microsphere.

Structures such as these could be used to create better micro- and nano-valves, motors and optics.

Shear says a great advantage of the hydrogels is that they are well suited for controlling and growing cells dynamically and in the environments in which they live.

Waste from the cells can move out of the structures and nutrients and other chemicals, including those added by the researchers to manipulate the cells' biology, can move in. Other microfabrication materials, such as glass, do not have such permeability.

Jason Shear | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: Hydrogel Ion Kaehr Shear bacteria structure

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>