Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for salt tolerant grasses aims to improve roadside plantings

07.07.2008
Standing in a greenhouse at the University of Rhode Island, Rebecca Brown was smiling even though it appeared that something had gone terribly wrong. Almost all of the 16 species of grass she planted last February in hundreds of small pots were dead.

The associate professor of turf science wasn't surprised. That's because the pots had been sitting in increasingly saltier water for five months, and few varieties of grass can put up with that environment.

Her aim, with funding from the Rhode Island Department of Transportation, was to identify a salt tolerance limit for native and ornamental turf grasses in hopes of finding a variety that can be used along highways without being killed when roadway salt – mixed with melting snow – is splashed onto the grass.

"The grasses we use in our lawns and along the roads in Rhode Island aren't adapted to salt, and they don't adapt over time because we don't allow them to go to seed," Brown said. "And salt tolerant western grasses may not grow well here because our salinity is only seasonal -- in the winter the grass has to survive the road salt, but during the rest of the year salt isn't a factor because our soil doesn't hold the salt."

... more about:
»Brown »fescue

So she used an ebb and flow hydroponics system to pump salt water into trays of grass to ensure consistent salt levels, starting with 2,500 parts per million of salt in February and increasing it by 2,500 parts per million every other week. In June, when the trials ended and most of the grass was dead, the salt concentration in the water was 22,000 parts per million, which is two-thirds the level of seawater.

Brown was pleased with the results. She pointed out a few tiny blades of green grass amidst the carnage, most from a variety of alkali grass that is known to be somewhat salt tolerant, as well as a couple samples of tufted hair grass and one red fescue.

"That one must have good genes," she said, "since none of the other fescues survived."

Her next step is to take the hardiest samples, plant them in the URI turf fields, collect their seeds, and through a process of selection develop a new variety of salt tolerant grass. Then she will test it again and evaluate how well it responds to mowing.

Brown said that the "salt zone" for Rhode Island highways is from 5 to 20 feet from the edge of the pavement, which is based on the distance that cars splash winter slush. It's for use in that zone that the Department of Transportation is seeking a better grass.

The department typically plants a mix of red fescue, perennial rye grass and Kentucky bluegrass along highways, but Brown said that rye and bluegrass grow poorly in roadside soils that are typically low in fertility. She also noted that most fescues are intolerant of salt.

While the research project is driven in part because the U.S Department of Transportation mandates the use of native grasses along roadways, Brown believes that the best alternative for Rhode Island will probably be an improved variety of red fescue – a plant which may have been introduced during colonial times – that she hopes to develop.

"It seems to do better than our native grasses," Brown said. "We should just use it because it works."

Or, more appropriately, because it lives.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

Further reports about: Brown fescue

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>