Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for salt tolerant grasses aims to improve roadside plantings

07.07.2008
Standing in a greenhouse at the University of Rhode Island, Rebecca Brown was smiling even though it appeared that something had gone terribly wrong. Almost all of the 16 species of grass she planted last February in hundreds of small pots were dead.

The associate professor of turf science wasn't surprised. That's because the pots had been sitting in increasingly saltier water for five months, and few varieties of grass can put up with that environment.

Her aim, with funding from the Rhode Island Department of Transportation, was to identify a salt tolerance limit for native and ornamental turf grasses in hopes of finding a variety that can be used along highways without being killed when roadway salt – mixed with melting snow – is splashed onto the grass.

"The grasses we use in our lawns and along the roads in Rhode Island aren't adapted to salt, and they don't adapt over time because we don't allow them to go to seed," Brown said. "And salt tolerant western grasses may not grow well here because our salinity is only seasonal -- in the winter the grass has to survive the road salt, but during the rest of the year salt isn't a factor because our soil doesn't hold the salt."

... more about:
»Brown »fescue

So she used an ebb and flow hydroponics system to pump salt water into trays of grass to ensure consistent salt levels, starting with 2,500 parts per million of salt in February and increasing it by 2,500 parts per million every other week. In June, when the trials ended and most of the grass was dead, the salt concentration in the water was 22,000 parts per million, which is two-thirds the level of seawater.

Brown was pleased with the results. She pointed out a few tiny blades of green grass amidst the carnage, most from a variety of alkali grass that is known to be somewhat salt tolerant, as well as a couple samples of tufted hair grass and one red fescue.

"That one must have good genes," she said, "since none of the other fescues survived."

Her next step is to take the hardiest samples, plant them in the URI turf fields, collect their seeds, and through a process of selection develop a new variety of salt tolerant grass. Then she will test it again and evaluate how well it responds to mowing.

Brown said that the "salt zone" for Rhode Island highways is from 5 to 20 feet from the edge of the pavement, which is based on the distance that cars splash winter slush. It's for use in that zone that the Department of Transportation is seeking a better grass.

The department typically plants a mix of red fescue, perennial rye grass and Kentucky bluegrass along highways, but Brown said that rye and bluegrass grow poorly in roadside soils that are typically low in fertility. She also noted that most fescues are intolerant of salt.

While the research project is driven in part because the U.S Department of Transportation mandates the use of native grasses along roadways, Brown believes that the best alternative for Rhode Island will probably be an improved variety of red fescue – a plant which may have been introduced during colonial times – that she hopes to develop.

"It seems to do better than our native grasses," Brown said. "We should just use it because it works."

Or, more appropriately, because it lives.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

Further reports about: Brown fescue

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>