Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for salt tolerant grasses aims to improve roadside plantings

07.07.2008
Standing in a greenhouse at the University of Rhode Island, Rebecca Brown was smiling even though it appeared that something had gone terribly wrong. Almost all of the 16 species of grass she planted last February in hundreds of small pots were dead.

The associate professor of turf science wasn't surprised. That's because the pots had been sitting in increasingly saltier water for five months, and few varieties of grass can put up with that environment.

Her aim, with funding from the Rhode Island Department of Transportation, was to identify a salt tolerance limit for native and ornamental turf grasses in hopes of finding a variety that can be used along highways without being killed when roadway salt – mixed with melting snow – is splashed onto the grass.

"The grasses we use in our lawns and along the roads in Rhode Island aren't adapted to salt, and they don't adapt over time because we don't allow them to go to seed," Brown said. "And salt tolerant western grasses may not grow well here because our salinity is only seasonal -- in the winter the grass has to survive the road salt, but during the rest of the year salt isn't a factor because our soil doesn't hold the salt."

... more about:
»Brown »fescue

So she used an ebb and flow hydroponics system to pump salt water into trays of grass to ensure consistent salt levels, starting with 2,500 parts per million of salt in February and increasing it by 2,500 parts per million every other week. In June, when the trials ended and most of the grass was dead, the salt concentration in the water was 22,000 parts per million, which is two-thirds the level of seawater.

Brown was pleased with the results. She pointed out a few tiny blades of green grass amidst the carnage, most from a variety of alkali grass that is known to be somewhat salt tolerant, as well as a couple samples of tufted hair grass and one red fescue.

"That one must have good genes," she said, "since none of the other fescues survived."

Her next step is to take the hardiest samples, plant them in the URI turf fields, collect their seeds, and through a process of selection develop a new variety of salt tolerant grass. Then she will test it again and evaluate how well it responds to mowing.

Brown said that the "salt zone" for Rhode Island highways is from 5 to 20 feet from the edge of the pavement, which is based on the distance that cars splash winter slush. It's for use in that zone that the Department of Transportation is seeking a better grass.

The department typically plants a mix of red fescue, perennial rye grass and Kentucky bluegrass along highways, but Brown said that rye and bluegrass grow poorly in roadside soils that are typically low in fertility. She also noted that most fescues are intolerant of salt.

While the research project is driven in part because the U.S Department of Transportation mandates the use of native grasses along roadways, Brown believes that the best alternative for Rhode Island will probably be an improved variety of red fescue – a plant which may have been introduced during colonial times – that she hopes to develop.

"It seems to do better than our native grasses," Brown said. "We should just use it because it works."

Or, more appropriately, because it lives.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

Further reports about: Brown fescue

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>