Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests a potentially damaging effect of extremely low frequency electromagnetic fields

17.07.2002

The effect of extremely low frequency electromagnetic fields (ELF-EMF), such as those emitted around high-voltage transmission lines on human health, is controversial. Some studies suggest an association between exposure to ELF-EMF and incidence of leukaemia, although little direct evidence exists that exposure causes damage to biological molecules. A new study, published in the Cancer Cell International, presents experimental evidence to show that extremely low frequency electro-magnetic fields can have a potentially damaging effect on the process of cell division in (already) radiation-injured cells, which could lead to them becoming cancerous. Cell division and the growth cycle rely on two major events. The first involves the replication of the cell`s genetic material (DNA). The second involves cell separation into two daughter cells. These steps are separated by two pauses or "gaps", the first occurs after cells have divided, but before the next round of DNA synthesis (G1) and the second between DNA synthesis and division (G2). These "gaps" allow the cell to take stock of each stage of the process before progressing to the next. The checkpoint in G1 prevents cells from duplicating their DNA if conditions are unfavourable, whilst the checkpoint in G2 stops cells from dividing when damage has occurred to the chromosomes (DNA). These checkpoints effectively police the process of cell division so that risk of damaged cells replicating is minimised.

When the molecules involved in cell division are damaged by ionising radiation, for example, it can lead to uncontrolled growth and the development of cancer. The research in Cancer Cell International examines the effects of combined ELF-EMF and ionising radiation on human cells. The researchers could not find any change in the process of cell division in cells exposed to ELF-EMF alone, but exposure to ionising radiation predictably caused the process of division to slow down as the cells were held at each checkpoint in order to repair the damage. It was anticipated that the combined effect of ELF-EMF and ionising radiation would further slow down cell cycle. However, cell division was slightly faster in 12 out of 20 experiments, but never slower.

It is well known that ionising radiation can itself cause cancer, but it seems that ELF-EMF makes the cells push on into division where errors become compounded. The researchers suggest that ELF-EMF may interfere with the G2 checkpoint that normally stops damaged cells entering division before they have had the opportunity to repair the damage, increasing the chances of them becoming cancerous.

The study is clearly at a preliminary stage; however, the researchers hope that this will open up a new line of investigation and help to understand the risks associated with ELF-EMF, for example, suspected in communities living in close proximity to high voltage transmission lines.

Gordon Fletcher | AlphaGalileo
Further information:
http://www.biomedcentral.com/info/pr-releases.asp?pr=20020716
http://www.cancerci.com/content/2/1/3

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>