Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests a potentially damaging effect of extremely low frequency electromagnetic fields

17.07.2002

The effect of extremely low frequency electromagnetic fields (ELF-EMF), such as those emitted around high-voltage transmission lines on human health, is controversial. Some studies suggest an association between exposure to ELF-EMF and incidence of leukaemia, although little direct evidence exists that exposure causes damage to biological molecules. A new study, published in the Cancer Cell International, presents experimental evidence to show that extremely low frequency electro-magnetic fields can have a potentially damaging effect on the process of cell division in (already) radiation-injured cells, which could lead to them becoming cancerous. Cell division and the growth cycle rely on two major events. The first involves the replication of the cell`s genetic material (DNA). The second involves cell separation into two daughter cells. These steps are separated by two pauses or "gaps", the first occurs after cells have divided, but before the next round of DNA synthesis (G1) and the second between DNA synthesis and division (G2). These "gaps" allow the cell to take stock of each stage of the process before progressing to the next. The checkpoint in G1 prevents cells from duplicating their DNA if conditions are unfavourable, whilst the checkpoint in G2 stops cells from dividing when damage has occurred to the chromosomes (DNA). These checkpoints effectively police the process of cell division so that risk of damaged cells replicating is minimised.

When the molecules involved in cell division are damaged by ionising radiation, for example, it can lead to uncontrolled growth and the development of cancer. The research in Cancer Cell International examines the effects of combined ELF-EMF and ionising radiation on human cells. The researchers could not find any change in the process of cell division in cells exposed to ELF-EMF alone, but exposure to ionising radiation predictably caused the process of division to slow down as the cells were held at each checkpoint in order to repair the damage. It was anticipated that the combined effect of ELF-EMF and ionising radiation would further slow down cell cycle. However, cell division was slightly faster in 12 out of 20 experiments, but never slower.

It is well known that ionising radiation can itself cause cancer, but it seems that ELF-EMF makes the cells push on into division where errors become compounded. The researchers suggest that ELF-EMF may interfere with the G2 checkpoint that normally stops damaged cells entering division before they have had the opportunity to repair the damage, increasing the chances of them becoming cancerous.

The study is clearly at a preliminary stage; however, the researchers hope that this will open up a new line of investigation and help to understand the risks associated with ELF-EMF, for example, suspected in communities living in close proximity to high voltage transmission lines.

Gordon Fletcher | AlphaGalileo
Further information:
http://www.biomedcentral.com/info/pr-releases.asp?pr=20020716
http://www.cancerci.com/content/2/1/3

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>