Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn animal study identifies new DNA weapon against avian flu

03.07.2008
Broad application of DNA vaccine could allow for quick mobilization during an epidemic

Researchers at the University of Pennsylvania School of Medicine have identified a potential new way to vaccinate against avian flu. By delivering vaccine via DNA constructed to build antigens against flu, along with a minute electric pulse, researchers have immunized experimental animals against various strains of the virus. This approach could allow for the build up of vaccine reserves that could be easily and effectively dispensed in case of an epidemic. This study was published last week in PLoS ONE.

"This is the first study to show that a single DNA vaccine can induce protection against strains of pandemic flu in many animal models, including primates," says David B. Weiner, Ph.D., Professor of Pathology and Laboratory Medicine. "With this type of vaccine, we can generate a single construct of a pandemic flu vaccine that will give much broader protection."

Traditional vaccines expose a formulation of a specific strain of flu to the body so it can create immune responses against that specific strain. Conversely, a DNA vaccine becomes part of the cell, giving it the blueprint it needs to build antigens that can induce responses that target diverse strains of pandemic flu.

... more about:
»Antigen »DNA »Vaccine »avian »immune »pandemic

Avian flu is tricky. Not only is it deadly, but it mutates quickly, generating different strains that escape an immune response targeted against one single strain. Preparing effective vaccines for pandemic flu in advance with either live or killed viruses, which protect against only one or few cross-strains, is therefore very difficult. How to predict which strain of avian flu may appear at any time is difficult. "We are always behind in creating a vaccine that can effectively protect against that specific strain," notes Weiner.

Instead of injecting a live or killed virus, Penn researchers injected three different species of animal models with synthetic DNA vaccines that are not taken from the flu microbe, but trick the immune system into mounting a broad response against pandemic flu, including strains to which the immune system was never exposed. Antibodies induced by the vaccine rapidly reached protective levels in all three animal species.

"The synthetic DNA vaccines designed in this study customize the antigen to induce more broad immune responses against the pathogen," says Weiner.

Researchers found evidence of two types of immune responses – T lymphocytes and antibodies -- in all three types of animal models. Two types of animal models (mice and ferrets) were protected from both disease and mortality when exposed to avian flu.

To ensure increased DNA delivery, the researchers administered the vaccine in combination with electroporation, a small, harmless electric charge that opens up cell pores facilitating increased entry of the DNA vaccine into cells.

If proven in humans, this research could lead the way to preparing against an outbreak of avian flu. Because these synthetic DNA vaccines are effective against multiple cross strains, vaccines could be created, stockpiled, prior to a pandemic, and thus be delivered quickly in the event of an outbreak, surmise the researchers.

This study has shown other advantages of DNA vaccines. On one hand, killed vaccines, which involve the injection of a dead portion of a virus, are relatively safe but usually effective at producing only a strong cellular immunity. Live vaccines, which involve the injection of a form of a live virus, can have increased manufacturing and some safety issues. Both of these vaccine strategies may have concerns in persons with certain allergies (egg for example) as current manufacturing methods rely on egg based production technologies. On the other hand, DNA vaccines preclude the need to create live tissue samples, which presents risk to those working with the virus.

"DNA vaccines have the benefits and avoid many conceptual negatives of other types of traditional vaccines," says Weiner.

This research also has implications for non-avian types of flu. Every year, scientists try to guess what strain of the year will be that creates the common flu. Sometimes their educated guess is wrong, which is why last year's influenza vaccine worked only 30 percent of the time. Designing traditional vaccines in combination with the DNA platform may be a partial solution to this dilemma, predicts Weiner.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/news

Further reports about: Antigen DNA Vaccine avian immune pandemic

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>