Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn animal study identifies new DNA weapon against avian flu

03.07.2008
Broad application of DNA vaccine could allow for quick mobilization during an epidemic

Researchers at the University of Pennsylvania School of Medicine have identified a potential new way to vaccinate against avian flu. By delivering vaccine via DNA constructed to build antigens against flu, along with a minute electric pulse, researchers have immunized experimental animals against various strains of the virus. This approach could allow for the build up of vaccine reserves that could be easily and effectively dispensed in case of an epidemic. This study was published last week in PLoS ONE.

"This is the first study to show that a single DNA vaccine can induce protection against strains of pandemic flu in many animal models, including primates," says David B. Weiner, Ph.D., Professor of Pathology and Laboratory Medicine. "With this type of vaccine, we can generate a single construct of a pandemic flu vaccine that will give much broader protection."

Traditional vaccines expose a formulation of a specific strain of flu to the body so it can create immune responses against that specific strain. Conversely, a DNA vaccine becomes part of the cell, giving it the blueprint it needs to build antigens that can induce responses that target diverse strains of pandemic flu.

... more about:
»Antigen »DNA »Vaccine »avian »immune »pandemic

Avian flu is tricky. Not only is it deadly, but it mutates quickly, generating different strains that escape an immune response targeted against one single strain. Preparing effective vaccines for pandemic flu in advance with either live or killed viruses, which protect against only one or few cross-strains, is therefore very difficult. How to predict which strain of avian flu may appear at any time is difficult. "We are always behind in creating a vaccine that can effectively protect against that specific strain," notes Weiner.

Instead of injecting a live or killed virus, Penn researchers injected three different species of animal models with synthetic DNA vaccines that are not taken from the flu microbe, but trick the immune system into mounting a broad response against pandemic flu, including strains to which the immune system was never exposed. Antibodies induced by the vaccine rapidly reached protective levels in all three animal species.

"The synthetic DNA vaccines designed in this study customize the antigen to induce more broad immune responses against the pathogen," says Weiner.

Researchers found evidence of two types of immune responses – T lymphocytes and antibodies -- in all three types of animal models. Two types of animal models (mice and ferrets) were protected from both disease and mortality when exposed to avian flu.

To ensure increased DNA delivery, the researchers administered the vaccine in combination with electroporation, a small, harmless electric charge that opens up cell pores facilitating increased entry of the DNA vaccine into cells.

If proven in humans, this research could lead the way to preparing against an outbreak of avian flu. Because these synthetic DNA vaccines are effective against multiple cross strains, vaccines could be created, stockpiled, prior to a pandemic, and thus be delivered quickly in the event of an outbreak, surmise the researchers.

This study has shown other advantages of DNA vaccines. On one hand, killed vaccines, which involve the injection of a dead portion of a virus, are relatively safe but usually effective at producing only a strong cellular immunity. Live vaccines, which involve the injection of a form of a live virus, can have increased manufacturing and some safety issues. Both of these vaccine strategies may have concerns in persons with certain allergies (egg for example) as current manufacturing methods rely on egg based production technologies. On the other hand, DNA vaccines preclude the need to create live tissue samples, which presents risk to those working with the virus.

"DNA vaccines have the benefits and avoid many conceptual negatives of other types of traditional vaccines," says Weiner.

This research also has implications for non-avian types of flu. Every year, scientists try to guess what strain of the year will be that creates the common flu. Sometimes their educated guess is wrong, which is why last year's influenza vaccine worked only 30 percent of the time. Designing traditional vaccines in combination with the DNA platform may be a partial solution to this dilemma, predicts Weiner.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/news

Further reports about: Antigen DNA Vaccine avian immune pandemic

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>