Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn animal study identifies new DNA weapon against avian flu

03.07.2008
Broad application of DNA vaccine could allow for quick mobilization during an epidemic

Researchers at the University of Pennsylvania School of Medicine have identified a potential new way to vaccinate against avian flu. By delivering vaccine via DNA constructed to build antigens against flu, along with a minute electric pulse, researchers have immunized experimental animals against various strains of the virus. This approach could allow for the build up of vaccine reserves that could be easily and effectively dispensed in case of an epidemic. This study was published last week in PLoS ONE.

"This is the first study to show that a single DNA vaccine can induce protection against strains of pandemic flu in many animal models, including primates," says David B. Weiner, Ph.D., Professor of Pathology and Laboratory Medicine. "With this type of vaccine, we can generate a single construct of a pandemic flu vaccine that will give much broader protection."

Traditional vaccines expose a formulation of a specific strain of flu to the body so it can create immune responses against that specific strain. Conversely, a DNA vaccine becomes part of the cell, giving it the blueprint it needs to build antigens that can induce responses that target diverse strains of pandemic flu.

... more about:
»Antigen »DNA »Vaccine »avian »immune »pandemic

Avian flu is tricky. Not only is it deadly, but it mutates quickly, generating different strains that escape an immune response targeted against one single strain. Preparing effective vaccines for pandemic flu in advance with either live or killed viruses, which protect against only one or few cross-strains, is therefore very difficult. How to predict which strain of avian flu may appear at any time is difficult. "We are always behind in creating a vaccine that can effectively protect against that specific strain," notes Weiner.

Instead of injecting a live or killed virus, Penn researchers injected three different species of animal models with synthetic DNA vaccines that are not taken from the flu microbe, but trick the immune system into mounting a broad response against pandemic flu, including strains to which the immune system was never exposed. Antibodies induced by the vaccine rapidly reached protective levels in all three animal species.

"The synthetic DNA vaccines designed in this study customize the antigen to induce more broad immune responses against the pathogen," says Weiner.

Researchers found evidence of two types of immune responses – T lymphocytes and antibodies -- in all three types of animal models. Two types of animal models (mice and ferrets) were protected from both disease and mortality when exposed to avian flu.

To ensure increased DNA delivery, the researchers administered the vaccine in combination with electroporation, a small, harmless electric charge that opens up cell pores facilitating increased entry of the DNA vaccine into cells.

If proven in humans, this research could lead the way to preparing against an outbreak of avian flu. Because these synthetic DNA vaccines are effective against multiple cross strains, vaccines could be created, stockpiled, prior to a pandemic, and thus be delivered quickly in the event of an outbreak, surmise the researchers.

This study has shown other advantages of DNA vaccines. On one hand, killed vaccines, which involve the injection of a dead portion of a virus, are relatively safe but usually effective at producing only a strong cellular immunity. Live vaccines, which involve the injection of a form of a live virus, can have increased manufacturing and some safety issues. Both of these vaccine strategies may have concerns in persons with certain allergies (egg for example) as current manufacturing methods rely on egg based production technologies. On the other hand, DNA vaccines preclude the need to create live tissue samples, which presents risk to those working with the virus.

"DNA vaccines have the benefits and avoid many conceptual negatives of other types of traditional vaccines," says Weiner.

This research also has implications for non-avian types of flu. Every year, scientists try to guess what strain of the year will be that creates the common flu. Sometimes their educated guess is wrong, which is why last year's influenza vaccine worked only 30 percent of the time. Designing traditional vaccines in combination with the DNA platform may be a partial solution to this dilemma, predicts Weiner.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.pennhealth.com/news

Further reports about: Antigen DNA Vaccine avian immune pandemic

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>