Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain ‘trick’ offers treatment hope for Alzheimer’s

03.07.2008
Scientists in the UK and Canada have made a significant step forward in the search for new drugs to treat Alzheimer’s disease.

An ageing population means that neurodegeneration, such as Alzheimer’s disease, is one of the major health problems in the developed world. But researchers at the University of York and Simon Fraser University in Burnaby, British Columbia, have designed an enzyme inhibitor which could ‘trick’ the brain and so help to halt neurodegeneration.

The research is published in the latest issue of Nature Chemical Biology.

One of the causes of neurodegeneration is a modification to the protein ‘tau’, which helps to maintain the stability of neurones in the brain, causing them to form aggregates termed ‘tangles’.

... more about:
»Alzheimer »Tau »enzyme

These diseases, or ‘tauopathies’ are believed to be caused by a form of the protein tau which has been excessively modified with phosphate.

By studying the chemistry and structure of relevant enzymes, the research teams at York, led by Professor Gideon Davies, and Simon Fraser, led by Professor David Vocadlo, have designed an enzyme inhibitor that prevents the phosphorylation of tau in animal models. They have effectively tricked the brain’s own enzymes into installing a sugar on to tau in place of the detrimental phosphates.

The enzyme inhibitor, termed a ‘thiazoline’, developed by Professor Vocadlo and Professor Davies is not yet a drug, but it is a major breakthrough in finding compounds that cross the blood-brain barrier to elicit beneficial effects that prevent the onset of tauopathies.

Professor Davies, of the Department of Chemistry at York, said: “We hope that the work will evolve into new drugs to treat Alzheimer’s disease, although that is still many years off. The work highlights the synergy of studying the chemistry of enzymes in living cells.”

The York /Simon Fraser collaboration also revealed the first structure of the enzyme responsible for the installation of these protective sugars in a paper in Nature Structural & Molecular Biology earlier this month.

David Garner | alfa
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/admin/presspr/pressreleases/alzheimersresearch.htm

Further reports about: Alzheimer Tau enzyme

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>