Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of gene mechanism could bring about new ways to treat metastatic cancer

03.07.2008
Researchers identify mechanism used by therapeutically active antitumor cytokine gene able to induce potent bystander antitumor effect in cancer cells

Research Highlights:

1) Molecular and biochemical mechanism of action of unique cytokine gene found to induce potent bystander antitumor effects in animal models and in Phase I clinical trials identified

2) The findings may lead researchers to develop potential novel enhanced therapies to treat various forms of cancer

... more about:
»Massey »VCU »bystander »induce »mda-7/IL-24 »metastatic
Virginia Commonwealth University and VCU Massey Cancer Center researchers have uncovered how a gene, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), induces a bystander effect that kills cancer cells not directly receiving mda-7/IL-24 without harming healthy ones, a discovery that could lead to new therapeutic strategies to fight metastatic disease.

The findings may provide a method to target metastatic disease – which is one of the primary challenges in cancer therapy. When cancer cells are localized in the body, specialists may be able to surgically remove the diseased area. However, when cancer metastasizes or spreads to sites remote from the primary tumor through the lymph system and blood vessels to new target sites, treatment becomes more difficult and in many instances ineffective.

In the study, published online in the June 30 issue of the Proceedings of the National Academy of Sciences, researchers report on the molecular and biochemical mechanisms by which the gene, mda-7/IL-24, is able to selectively kill cancer cells through apoptosis, or programmed cell death. The gene induces a potent bystander effect, meaning that it not only kills the original tumor, but distant ones as well, which has been observed but previously not mechanistically defined in animal models containing human cancers and in a Phase I Clinical Trial involving direct injection of an adenovirus expressing mda-7/IL-24 into advanced carcinomas and melanomas.

Further, the team determined that mda-7/IL-24 induces tumor-specific killing through a process known as endoplasmic reticulum stress. The endoplasmic reticulum, or ER, is a subcellular structure that plays a key role in cellular protein disposition. ER stress results from accumulation of extra proteins in the ER of a cancer cell and can activate pro-survival or pro-cell suicide pathways.

"Cancer cells cannot accommodate or recover from stress the way normal, healthy cells can. When the ER is stressed in this way, the result is an unfolded protein response which overloads the system and shorts out the cancer cell. This prevents tumor development, growth and invasion – and ultimately the cancer cell dies," said Paul B. Fisher, Ph.D., professor and interim chair of the Department of Human and Molecular Genetics, and director of the VCU Institute of Molecular Medicine, in the VCU School of Medicine.

This work was supported by grants from the National Institutes of Health and the Samuel Waxman Cancer Research Foundation.

In related work, Fisher, who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research and researcher with the VCU Massey Cancer Center, has been invited by the NIH's National Cancer Institute to present his team's translational research on mda-7/IL-24 at the National Cancer Institute's (NCI) Translational Science Meeting. The research focuses on using mda-7/IL-24 in the development of therapies for prostate cancer, malignant glioma and ovarian cancer. The meeting is scheduled for November 2008 in Washington, D.C.

Fisher worked with a team that included VCU School of Medicine researchers Paul Dent, Ph.D., professor in the VCU Department of Biochemistry and Molecular Biology; Zaozhong Su, Ph.D., associate professor in the VCU Department of Human and Molecular Genetics; Devanand Sarkar, Ph.D., assistant professor at the VCU Massey Cancer Center and Department of Human and Molecular Genetics; and Moira Sauane, Ph.D.; Pankaj Gupta, Ph.D.; and Irina V. Lebedeva, Ph.D., with the Columbia University College of Physicians and Surgeons in New York.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls nearly 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer.

Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.

Anne Buckley | EurekAlert!
Further information:
http://www.massey.vcu.edu
http://www.vcu.edu

Further reports about: Massey VCU bystander induce mda-7/IL-24 metastatic

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>