Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal the key mechanisms for affinity between transient binding proteins

02.07.2008
Most of the functions performed by a cell are the result of interactions between proteins, which recognise their binding partner by affinity features localized on the protein surface.

There are many kinds of interactions; however, the most complicated to study from the perspective of structural biology are those which are transient. This type of interaction is brief and occurs through a large section of the protein surface- the globular domain -, and a very small section of the surface of another proteins, the so-called lineal motif or peptide.

The difficulty lies in the fact that these relations are of short duration and there are few crystallized peptide structures. Researchers at the Institute for Research in Biomedicine (IRB Barcelona) have performed the first computational analysis of transient interactions between proteins in order to reveal what determines their recognition as ideal partners and have unveiled part of the molecular mechanisms involved in the specificity of this binding. The results of this study have been published in the scientific journal PLoS One.

“Knowing what determines protein-protein binding may have implications, for example, in the design of new drugs”, explains Patrick Aloy, ICREA research professor at IRB Barcelona, “however, we currently know very little about this type of binding”. These kinds of interactions occur mainly between proteins involved in signalling pathways and regulatory networks, and they serve to translate and transmit extracellular signals to the cell nucleus.

... more about:
»Protein »Transient »lineal »motif
The context is relevant
In Patrick Aloy’s Structural Biology Laboratory they have detected all interactions possible between the globular domain and peptide by exploring the 45,000 3D protein structures currently available on the international database PDB (Protein Data Base), and establishing rules from them. “One of the conclusions from the study is that what determines that two proteins recognise each other as binding partners falls outside the lineal contact motif, in what is called the context”, explains Aloy.

The contextual residues are amino acids that are found in nearby regions of the lineal motif but do not form part of it. “The binding strength between two proteins is determined by contacts found in the lineal motif but it is the contextual residues that hold information about the most suitable proteins, thereby preventing undesirable binding between similar proteins”, explains Amelie Stein, a pre-doctoral student with Aloy’s lab and first author of the article.

The analysis performed by the researchers has also revealed that in certain conditions non native interactions may occur, that is to say, interactions with other proteins that are not optimum. “This is what we refer to as complementary partners, other interaction proteins that can compensate for the lack of the ideal protein”, explains Stein. According to the researchers, these non-optimum interactions allow the establishment of emergency circuits that increase the strength of cellular networks. Specifically, one line of research derived from the study by Aloy and Stein focuses on the identification of proteins unable to establish safety circuits and therefore with a good chance of becoming future therapeutic targets.

Sonia Armengou | alfa
Further information:
http://www.irbbarcelona.org
http://www.irbbarcelona.org/index.php/en/news/irb-news/scientific/scientists-reveal-the-key-mechanisms-for-affinity-between-transient-b

Further reports about: Protein Transient lineal motif

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>