Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal the key mechanisms for affinity between transient binding proteins

02.07.2008
Most of the functions performed by a cell are the result of interactions between proteins, which recognise their binding partner by affinity features localized on the protein surface.

There are many kinds of interactions; however, the most complicated to study from the perspective of structural biology are those which are transient. This type of interaction is brief and occurs through a large section of the protein surface- the globular domain -, and a very small section of the surface of another proteins, the so-called lineal motif or peptide.

The difficulty lies in the fact that these relations are of short duration and there are few crystallized peptide structures. Researchers at the Institute for Research in Biomedicine (IRB Barcelona) have performed the first computational analysis of transient interactions between proteins in order to reveal what determines their recognition as ideal partners and have unveiled part of the molecular mechanisms involved in the specificity of this binding. The results of this study have been published in the scientific journal PLoS One.

“Knowing what determines protein-protein binding may have implications, for example, in the design of new drugs”, explains Patrick Aloy, ICREA research professor at IRB Barcelona, “however, we currently know very little about this type of binding”. These kinds of interactions occur mainly between proteins involved in signalling pathways and regulatory networks, and they serve to translate and transmit extracellular signals to the cell nucleus.

... more about:
»Protein »Transient »lineal »motif
The context is relevant
In Patrick Aloy’s Structural Biology Laboratory they have detected all interactions possible between the globular domain and peptide by exploring the 45,000 3D protein structures currently available on the international database PDB (Protein Data Base), and establishing rules from them. “One of the conclusions from the study is that what determines that two proteins recognise each other as binding partners falls outside the lineal contact motif, in what is called the context”, explains Aloy.

The contextual residues are amino acids that are found in nearby regions of the lineal motif but do not form part of it. “The binding strength between two proteins is determined by contacts found in the lineal motif but it is the contextual residues that hold information about the most suitable proteins, thereby preventing undesirable binding between similar proteins”, explains Amelie Stein, a pre-doctoral student with Aloy’s lab and first author of the article.

The analysis performed by the researchers has also revealed that in certain conditions non native interactions may occur, that is to say, interactions with other proteins that are not optimum. “This is what we refer to as complementary partners, other interaction proteins that can compensate for the lack of the ideal protein”, explains Stein. According to the researchers, these non-optimum interactions allow the establishment of emergency circuits that increase the strength of cellular networks. Specifically, one line of research derived from the study by Aloy and Stein focuses on the identification of proteins unable to establish safety circuits and therefore with a good chance of becoming future therapeutic targets.

Sonia Armengou | alfa
Further information:
http://www.irbbarcelona.org
http://www.irbbarcelona.org/index.php/en/news/irb-news/scientific/scientists-reveal-the-key-mechanisms-for-affinity-between-transient-b

Further reports about: Protein Transient lineal motif

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>