Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fifteen human genomes each week: The Wellcome Trust Sanger Institute Hits 1 Terabase

02.07.2008
The Wellcome Trust Sanger Institute has sequenced the equivalent of 300 human genomes in just over six months. The Institute has just reached the staggering total of 1,000,000,000,000 letters of genetic code that will be read by researchers worldwide, helping them to understand the role of genes in health and disease. Scientists will be able to answer questions unthinkable even a few years ago and human medical genetics will be transformed.

The amount of data is remarkable: every two minutes, the Institute produces as much sequence as was deposited in the first five years of the international DNA sequence databases, which started in 1982. It is a global milestone.

"I am delighted that our rapid adoption of next-generation sequencing technologies has been so successful in driving forward our biomedical research," says Dr Harold Swerdlow, Head of Sequencing Technology at the Wellcome Trust Sanger Institute. "Our internal projects, our work with external collaborators and our participation in major international programmes are all benefiting from our success. "

The Institute has major roles in projects such as The 1000 Genomes Project, The International Cancer Genome Consortium and the second round of the Wellcome Trust Case Control Consortium, all of which will depend on DNA sequence to uncover genetics variants that are important for human disease. Next-generation sequencing is also enabling the Institute's own research portfolio.

... more about:
»DNA »Disease »Genom »Next-generation »Sequencing

"The Sanger Institute is positioned to take on challenges and to answer questions that are daunting to most," says Professor Allan Bradley, Director. "We can explore important biomedical questions in a way that few can match, and next-generation sequencing is a vital part of that quest."

The 1000 Genomes Project, launched in January 2008, will produce a map of DNA sequence variants of unparalleled accuracy. Expected to take three years, the Project is currently in a pilot phase. The Sanger Institute is ahead of schedule and has deposited more than 300 billion bases to date, more than half of the global total so far.

"The 1000 Genomes Project is exploring the genome at a resolution nobody has attempted before," says Dr Richard Durbin, who co-heads the Project. "Our goals are ambitious and all of us are still learning, but we can already see that, through the efforts of the Sanger Institute and our partners in the consortium, the results will have a major impact on our understanding of human genetics and disease."

Next-generation sequencing platforms can uncover a wide range of variants in genomes, from single-base changes (called single nucleotide polymorphisms, or SNPs) to larger regions that can be absent from some people or duplicated in others (called copy number variants, or CNVs). Before the Human Genome and HapMap Projects - in which the Sanger Institute played a leading role - the extent of CNVs in human biology was not appreciated. With those tools to hand, scientists could begin to map CNVs across the genome and understand their role in common disease.

It is not only inherited variants that the scientists can tackle using next-generation sequencing platforms. The Sanger Institute's Cancer Genome Project team, co-led by Professor Mike Stratton and Dr Andy Futreal, has searched for genes that are mutated in common cancers for eight years. Until now, that has meant a piecemeal approach, focussing either on a few samples or only a few hundred regions from the genome. While this is a hugely successful method, next-generation sequencing means that all genes and gene regions in many cancer samples can be looked at simultaneously.

"We have already published results from a study of lung cancer samples that illustrate the complexity and diversity of cancer genomes and have obtained more data in six months than in the previous five years," explains Professor Stratton. "The advent of the next-generation sequencing technologies allows us now to search for all the types of somatic change in cancer genomes and to begin complete resequencing of whole cancer genomes, acquiring full catalogues of somatic changes, ultimately in thousands of cancers as a leading player in the International Cancer Genome Consortium."

The Pathogen Sequencing teams, who used conventional sequencing methods to decode the genomes of MRSA, Cdiff and the parasites that cause diseases such as malaria and sleeping sickness, are gathering a rich harvest of data.

"To tackle pathogens we need to understand how they vary, how they acquire new abilities to cause infection and how they spread through populations," says Professor Julian Parkhill, Head of Sequencing and the Pathogen teams. "Together with colleagues in Vietnam and Kathmandu, we are using this new technology to uncover the fine variation that will enable us to understand the transmission of typhoid fever in South-East Asia, and with colleagues in the UK we will be able to investigate how MRSA and Cdiff spread in our hospitals."

Raw data is produced by the next-generation sequencing platforms at the Sanger Institute on a massive scale - more than 50 Terabytes of quality-filtered data per week currently. These data are being deposited in both local and international databases.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk
http://www.wellcome.ac.uk

Further reports about: DNA Disease Genom Next-generation Sequencing

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>