Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dividing Cells Find Their Middle by Following Protein Contour Map

02.07.2008
Scientists at Rockefeller University have shown that a protein-chemistry-based contour map, which helps individual proteins locate the center of their cell without direction from a "master organizer," is key to ensuring accurate division during mitosis.

Self-organization keeps schools of fish, flocks of birds and colonies of termites in sync. It's also, according to new research, the way cells regulate the final stage of cell division. Scientists at Rockefeller University have shown that a protein-chemistry-based contour map, which helps individual proteins locate the center of their cell without direction from a "master organizer," is key to ensuring accurate division during mitosis. The finding is reported in the June 19 issue of Nature.

In self-organizing systems, each individual, whether bird, fish, termite or protein, constantly receives and evaluates visual and chemical signals in order to maintain position or determine action, and properties and patterns of the larger whole system emerge from a multiplicity of simple local interactions. Scientists have hypothesized that similar systems exist in cells to carry out numerous functions. The Rockefeller team, led by Professor Tarun Kapoor, head of the Laboratory of Chemistry and Cell Biology, focused on a self-organizing system in mitosis.

As a cell divides, chromosomes in the nucleus duplicate, separate and move to the outer edge of the cell while the cell membrane pinches inward in the middle to form a structure called the cleavage furrow. In order to do this, the cell must know where its middle is.

... more about:
»Division »Kapoor »Kinase »mitosis »phosphorylation

Kapoor, working with colleagues in his laboratory and at the University of Virginia School of Medicine, tracked the activity of a key regulator of mitosis, a protein called Aurora B. Aurora is a kinase, an enzyme that attaches phosphate chemical groups to proteins in a process called phosphorylation. Other enzymes, called phosphatases, reverse this process by removing phosphates.

To follow Aurora activity, the researchers, in collaboration with Alison North of Rockefeller's Bio-Imaging Resource Center, adapted a powerful microscopy technique called FRET imaging, which measures how close two fluorescent molecules are to each other. Chemical modification of proteins cannot easily be visualized with microscopes, so Kapoor and his colleagues engineered a biosensor to measure the balance between phosphorylation by Aurora and dephosphorylation by phosphatases.

The biosensor was anchored to different sites in the cell -- the equivalent of positioning a microphone at different locations in a room -- then analyzed how the information changes over time. The findings: proteins in the middle of the cell had a higher probability of being phosphorylated by Aurora kinase than those located near the edges.

"Aurora kinase essentially generates a protein chemistry-based contour map, which tells individual molecular players where the middle is," says Kapoor. "And the middle is where there would be the highest probability of being modified by Aurora kinase. It's roughly equivalent, Kapoor says, to a self-organizing school of fish, in which fish in the middle feel something different from the fish on the edges.

"What's really exciting is the discovery of a phosphorylation gradient by tracking in living cells the chemical modifications of proteins," says Kapoor. "We can't actually see aurora kinase activity itself, but we can look at the balance of the phosphorylation of a reporter substrate that depends on this kinase."

"This remarkable study shows how an enzyme, aurora B, governs a key step in cell division: positioning of the cleavage furrow," said Richard Rodewald, who oversees cell division grants at the National Institute of General Medical Sciences, which partially supported the research. "This study also underscores the value of the new generation of fluorescent probes for visualizing in exquisite detail the inner workings of living cells."

Joseph Bonner | newswise
Further information:
http://www.rockefeller.edu

Further reports about: Division Kapoor Kinase mitosis phosphorylation

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>