Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dividing Cells Find Their Middle by Following Protein Contour Map

Scientists at Rockefeller University have shown that a protein-chemistry-based contour map, which helps individual proteins locate the center of their cell without direction from a "master organizer," is key to ensuring accurate division during mitosis.

Self-organization keeps schools of fish, flocks of birds and colonies of termites in sync. It's also, according to new research, the way cells regulate the final stage of cell division. Scientists at Rockefeller University have shown that a protein-chemistry-based contour map, which helps individual proteins locate the center of their cell without direction from a "master organizer," is key to ensuring accurate division during mitosis. The finding is reported in the June 19 issue of Nature.

In self-organizing systems, each individual, whether bird, fish, termite or protein, constantly receives and evaluates visual and chemical signals in order to maintain position or determine action, and properties and patterns of the larger whole system emerge from a multiplicity of simple local interactions. Scientists have hypothesized that similar systems exist in cells to carry out numerous functions. The Rockefeller team, led by Professor Tarun Kapoor, head of the Laboratory of Chemistry and Cell Biology, focused on a self-organizing system in mitosis.

As a cell divides, chromosomes in the nucleus duplicate, separate and move to the outer edge of the cell while the cell membrane pinches inward in the middle to form a structure called the cleavage furrow. In order to do this, the cell must know where its middle is.

... more about:
»Division »Kapoor »Kinase »mitosis »phosphorylation

Kapoor, working with colleagues in his laboratory and at the University of Virginia School of Medicine, tracked the activity of a key regulator of mitosis, a protein called Aurora B. Aurora is a kinase, an enzyme that attaches phosphate chemical groups to proteins in a process called phosphorylation. Other enzymes, called phosphatases, reverse this process by removing phosphates.

To follow Aurora activity, the researchers, in collaboration with Alison North of Rockefeller's Bio-Imaging Resource Center, adapted a powerful microscopy technique called FRET imaging, which measures how close two fluorescent molecules are to each other. Chemical modification of proteins cannot easily be visualized with microscopes, so Kapoor and his colleagues engineered a biosensor to measure the balance between phosphorylation by Aurora and dephosphorylation by phosphatases.

The biosensor was anchored to different sites in the cell -- the equivalent of positioning a microphone at different locations in a room -- then analyzed how the information changes over time. The findings: proteins in the middle of the cell had a higher probability of being phosphorylated by Aurora kinase than those located near the edges.

"Aurora kinase essentially generates a protein chemistry-based contour map, which tells individual molecular players where the middle is," says Kapoor. "And the middle is where there would be the highest probability of being modified by Aurora kinase. It's roughly equivalent, Kapoor says, to a self-organizing school of fish, in which fish in the middle feel something different from the fish on the edges.

"What's really exciting is the discovery of a phosphorylation gradient by tracking in living cells the chemical modifications of proteins," says Kapoor. "We can't actually see aurora kinase activity itself, but we can look at the balance of the phosphorylation of a reporter substrate that depends on this kinase."

"This remarkable study shows how an enzyme, aurora B, governs a key step in cell division: positioning of the cleavage furrow," said Richard Rodewald, who oversees cell division grants at the National Institute of General Medical Sciences, which partially supported the research. "This study also underscores the value of the new generation of fluorescent probes for visualizing in exquisite detail the inner workings of living cells."

Joseph Bonner | newswise
Further information:

Further reports about: Division Kapoor Kinase mitosis phosphorylation

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>