Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link Early Stem Cell Mutation to Autism

02.07.2008
Scientists at the Burnham Institute for Medical Research have shown that neural stem cell development may be linked to Autism. The study demonstrated that mice lacking the myocyte enhancer factor 2C protein in neural stem cells had smaller brains, fewer nerve cells and showed behaviors similar to those seen in humans with a form of autism known as Rett Syndrome.

In a breakthrough scientific study published today in the Proceedings of the National Academy of Sciences, scientists at the Burnham Institute for Medical Research have shown that neural stem cell development may be linked to Autism.

The study demonstrated that mice lacking the myocyte enhancer factor 2C (MEF2C) protein in neural stem cells had smaller brains, fewer nerve cells and showed behaviors similar to those seen in humans with a form of autism known as Rett Syndrome.

This work represents the first direct link between a developmental disorder of neural stem cells and the subsequent onset of autism.

... more about:
»Autism »MEF2C »Stem »Syndrome »neural

The research team was led by Stuart A. Lipton, M.D., Ph.D., a clinical neurologist and Professor and Director of the Del E. Webb Neuroscience, Aging and Stem Cell Research Center at Burnham.

“These results give us a good hint of how to look at Rett Syndrome and potentially other forms of autism in humans,” said Dr. Lipton. “Having identified a mutation that causes this defect, we can track what happens. Perhaps we can correct it in a mouse, and if so, eventually correct it in humans.”

Discovered in Dr. Lipton’s laboratory, MEF2C turns on specific genes which drive stem cells to become nerve cells. When MEF2C was deleted from neural stem cells in mice, there was a faulty distribution of neurons accompanied by severe developmental problems. Adult mice lacking MEF2C in their brains displayed abnormal anxiety-like behaviors, decreased cognitive function and marked paw clasping, a behavior which may be analogous to hand wringing, a notable feature in humans with Rett syndrome.

“There’s a yin and yang to this MEF2C protein,” said Dr. Lipton. “My laboratory recently showed that MEF2C induces embryonic stem cells to become neurons. In this new research, we show that knocking out MEFC2 in the brain results in mice with smaller brains, fewer neurons and reduced neuronal activity. The commonality is the protein’s association in making new neurons.”

Collaborators were Drs. Hao Li, Shu-ichi Okamoto, Nobuki Nakanishi and Scott McKercher, of Burnham, as well as Dr. Amanda Roberts from The Scripps Research Institute and Dr. John Schwarz from the Albany Medical Center.

Rett syndrome, a form of autism, afflicts more girls than boys and results in poor brain development, repetitive hand motions, altered anxiety behaviors and the inability to speak. Patients with Rett Syndrome also suffer from seizures and other debilitating neurological symptoms.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham is one of the fastest growing research institutes in the country with operations in California and Florida. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Heidi Chokeir | newswise
Further information:
http://www.burnham.org

Further reports about: Autism MEF2C Stem Syndrome neural

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>