Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Barcode of Life - EuroBioForum to showcase initiative to calibrate Europe's biodiversity using DNA Barcodes

01.07.2008
The idea of barcoding is familiar to many: in almost every supermarket the checkout operator shows the ticket labelled with a series of black bars to a laser scanner which responds with a beep; a computer analyses the code, identifies the product and the price is sent to the till.

Now, in an ambitious initiative scientists want to apply this concept to life by using DNA - nature's unique barcode of every species of animal, plant and microbe - to create a vast library of every living organism on the planet. Such a global DNA barcode database would prove invaluable in numerous ways, from identifying new species of organism and monitoring biodiversity to detecting fraud.

The ECBoL initiative aims to establish a Network of European Leading Laboratories (NELL) among major biodiversity resource centres of Europe. This network will have the capacity to generate DNA barcodes of species at an industrial scale, for identifying life on earth. Once established, the consortium has a goal to initially barcode 1M specimens, representing 100K species within 5 years. Further initiatives will be launched to expand the barcode database in an attempt to represent all known and as yet unknown life on Earth.

The 'barcodes' in living organisms are short sequences of genetic material that are unique to that organism. In animals, for example, a particular gene sequence in a structure in the cell called the mitochondrion has been shown to be unique to any given species. Similar sequences have been found for plants, and scientists are actively searching for barcode genes in bacteria, fungi and other micro-organisms.

It's essential that such an initiative is international in scope, and at this year's EuroBioForum meeting in Strasbourg in September, Professor Pedro Crous will be putting the case for Europe's involvement in the International Barcode of Life initiative.

"DNA barcoding will allow us to get a better understanding of life and a better appreciation of life," says Crous, who is director of the CBS Fungal Biodiversity Centre in Utrecht, The Netherlands.

The key advantage of DNA barcoding over traditional taxonomy to identify organisms is the potential for its great speed and accuracy. "Conventionally organisms are identified largely based on aspects such as their size, colour and unique morphological features," says Crous. "This gives rise to a situation where many species can be identified only by taxonomic experts, who are few and far between. This can make it difficult to identify known species as well as new ones. DNA barcoding would solve all this."

The concept is simple. A sample of the specimen is processed to produce the barcode. This is then matched against a library of known barcodes and in this way the specimen is identified.

"So if a shipment of exotic animals arrives at the customs point, you can determine very quickly if it contains endangered species or not and apprehend the involved importers," Crous says. "You can also answer a whole range of complex ecological and biodiversity questions."

To do this, the barcode database must first be constructed. The International Barcode of Life initiative was proposed by Canadian scientists and is seeking to raise 150 million Canadian dollars (just under 100 million euros) to barcode 500,000 species over the next five years. The logistics will inevitably be complex, so the initiative is proposing a series of central and regional 'nodes' to fund and coordinate the activity across the world. Over the years it is hoped that every species - several million - will eventually be barcoded.

"Europe will be a central node, and to qualify for this it is necessary to raise 25 million dollars in Europe," Crous says. "Europe needs to play a central role in this initiative. We have amazing collections in museums and herbaria that have been gathered over the past centuries - the lion's share of all the species known on Earth are represented in European collections. We also have a strong tradition of taxonomy, so we are in a uniquely powerful position to make a real impact in this field."

At the EuroBioForum meeting Crous will put forward proposals for a Network of European Leading Laboratories (NELL) to undertake most of the barcoding work. "At the moment we have eight or nine European countries with co-ordinators committed to this proposal" Crous says. "What we want to achieve at the EuroBioFund meeting is to get commitment from industry and governments that support biodiversity research to commit to this European barcoding campaign."

As technology develops, barcoding will become increasingly simple and widespread, Crous predicts. "One of the ultimate goals is to develop a hand-held DNA barcoder," Crous says. "This sounds very futuristic but is not as far-fetched as it might seem. Already people have portable technology for gene sequencing. There are wireless technologies that would be able to send the barcode data to a central database for matching and receive the result. What is still required is miniaturisation of the whole platform - the entire sample preparation. But various groups are working on this."

A hand-held system would allow people to carry out instant identification of specimens in the field - in a rain forest, for example, or, closer to home, in a hospital where microbiologists need to identify pathogenic organisms. For instance, an increasing numbers of immuno-suppressed patients are developing infections with organisms that were not previously known as pathogens. Fast and reliable identification of novel diseases can save those patients lives.

"Barcoding is the future," Crous concludes. "It would be a sin if Europe, with its rich collections and its unique expertise in taxonomy, does not play its part."

Thomas Lau | alfa
Further information:
http://www.esf.org

Further reports about: Biodiversity Crous DNA EuroBioForum Life barcoding identify organism specimen

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>