Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial resistance is futile against wound-cleaning laser

01.07.2008
A laser-activated antimicrobial offers hope for new treatments of bacterial infections, even those that are resistant to current drugs.

Research published today in the open access journal BMC Microbiology describes the use of a dye, indocyanine green, which produces bacteria-killing chemicals when lit by a specific kind of laser light.

Michael Wilson led a team from UCL (University College London) who carried out experiments showing that activated indocyanine green is capable of killing a wide range of bacteria including Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa. The dye is safe for humans. The strength of this new approach lies in the variety of ways in which the chemicals produced by the activated dye harm bacteria. As Wilson explains, this means that resistance is unlikely to develop, “The mechanism of killing is non-specific, with reactive oxygen species causing damage to many bacterial components, so resistance is unlikely to develop - even from repeated use”. Michael Wilson’s co-authors on the study include Ghada Omar and Sean Nair of the Division of Microbial Diseases, UCL Eastman Dental Institute.

The increasing occurrence of bacterial resistance is a well-known problem facing modern medicine. The laser-powered treatment described in the study will be useful in the treatment of infections that occur in wounds. According to Wilson “Infected wounds are responsible for significant morbidity and mortality, and an increase in the duration and the cost of hospital stay. The growing resistance to conventional antibiotics among organisms that infect wounds and burns makes such infections difficult to treat. The technique we are exploring is driven by the need to develop novel strategies to which pathogens will not easily develop resistance.”

... more about:
»Laser »Wilson »wounds

The laser used by the researchers emits ‘near-infrared’ light, which is known to be capable of producing heat. However, as Wilson describes, “Substantial killing of all of the bacteria tested was achieved without causing any temperature rise. The benefit of the laser described in this study is that it produces light that is more able to penetrate deep wounds, increasing the area cleansed”.

Graeme Baldwin | alfa
Further information:
http://www.biomedcentral.com/bmcmicrobiol/
http://www.biomedcentral.com/

Further reports about: Laser Wilson wounds

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>