Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passports for penguins

01.07.2008
Penguin recognition project

Ground-breaking technology that will enable biologists to identify and monitor large numbers of endangered animals, from butterflies to whales, without being captured, will be shown to the public for the first time at this year's Royal Society Summer Science exhibition [30 June to 3 July].

Scientists at the University of Bristol, working on Robben Island in South Africa, have devised an intelligent, visual surveillance system that can be integrated into wildlife habitats as a non-intrusive means of capturing detailed and reliable data on the population dynamics and social behaviour of endangered species.

The research advances techniques that originated in computer vision and human biometrics in order to help field biology and to better understand and conserve endangered species, in particular, the African penguin (Spheniscus demersus).

... more about:
»Africa »Animal »species

The project, called the 'Penguin Recognition Project', supported by the Earthwatch, the international environmental charity, and the Leverhulme Trust, has focused on the African penguin because their numbers have declined from more than a million at the start of the last century to fewer than 170,000 today. The penguin population, on Robben Island, South Africa, is a population of nearly 20,000 and conventional tagging techniques can only monitor a few percent of the population. The aim of the Penguin Recognition Project is to develop a system capable of doing automatic monitoring and which, more generally, could be the solution to a real-world problem facing many ecologists.

African penguins carry a pattern of black spots on their chests that does not change from season to season during their adult life. As far as scientists can tell, no two penguins have exactly the same pattern. The researchers have developed a real-time system that can locate African penguins whose chests are visible within video sequences or still images. An extraction of the chest spot pattern allows the generation of a unique biometrical identifier for each penguin. These biometric data can then be used to identify individual, African penguins from video or photographic images by comparison with a population database.

Dr Tilo Burghardt, RCUK Fellow in Exabyte Informatics in the Department of Computer Science at Bristol University, said: "We believe the new technology developed will enable biologists to identify and monitor large numbers of diverse species cheaply, quickly and automatically."

Peter Barham, Professor of Physics at Bristol University and penguin fanatic, who originated the project added: "Once achieved, these systems will revolutionise the precision, quantity and quality of population data available to ecologists and conservationists. There will also be an animal welfare benefit since there is no need to expose the animals to the stress of capture, or side-effects of being marked."

Provided that a good image of a penguin can be extracted, the system can correctly identify the individual with around 98 per cent reliability. The current limitation of the system, based on one camera, is that some passing penguins are hidden behind others, or the lighting is poor. The researchers are currently working to overcome these limitations both by combining images from intelligent pan-tilt-zoom cameras, and by using infra-red imaging to provide data both day and night. The basic image-recognition system has also been trialled with zebras, sharks and, in principle, can be extended to any species with complex surface patterns.

Joanne Fryer | EurekAlert!
Further information:
http://www.SpotThePenguin.com

Further reports about: Africa Animal species

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>