Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome communication

01.07.2008
Alleles of homologous genes can silence one another through paramutations

In the late 19th century Gregor Mendel used peas to show that one copy of a gene (allele) is inherited from the mother and one from the father. In the progeny, the inherited genes are expressed at the right time and in the right place, but until recently, it was thought that although gene products could be modified during the life of the organism, the genes themselves were unchanged, except for random mutation.

Now it appears that one copy of some genes can alter the expression of the other copy, and those changes are passed down to the next generation. These epigenetic alterations, called paramutations may be important in introducing changes when plants and other organisms are environmentally stressed. The exact mechanisms of how genes talk to other genes and change their behavior are being investigated, and recent results suggest that these processes could be important in engineering plants responsive to a variety of environmental conditions.

Dr. Vicki Chandler and her colleagues have studied paramutations in maize and other plants and have identified some of the genes and mechanisms that operate in this epigenetic process. Dr. Chandler, of the Department of Plant Sciences at the University of Arizona, Tucson, will be presenting this work at a symposium on Maize Biology at the annual meeting of the American Society of Plant Biologists in Mérida, Mexico (June 28, 9:10 AM).

... more about:
»Chromatin »DNA »RNA »allele »homologous »maize »paramutation

The sequencing of genes, proteins, and, ultimately, whole genomes has revealed that genomes are not simply strings of genes, but rather complex, communicating, and interacting regions of information that could be compared to DNA computers controlling growth, development, and metabolism in each organism. The physical architecture of the genome is also highly complex. The nucleus, where the genome resides, is not full of strings of DNA like a pot of spaghetti. Rather, the strands of DNA are wrapped around proteins called histones and the whole is organized into an elegant and highly controlled structure called chromatin. When it is time for genes to be expressed, a section of chromatin is unwound and the DNA for that particular gene is made available to the machinery that transcribes DNA to RNA. Once the process is finished, the DNA is neatly folded back into the chromatin structure until needed again. Different parts of the genome can interact by direct contact or through intermediaries that can be proteins or RNA sequences. The exact mechanisms of how paramutagenic alleles communicate with their homologous partners are still unknown, but the work of Chandler and others suggests that both direct contact of homologous regions and changes induced by intermediary RNA molecules may be involved.

Peas also played an important role in the discovery of paramutations, as the first mutants of this type were observed in peas in 1915. Then, in the 1950s, Alexander Brink identified these types of mutations as interactions between alleles. He recognized that these interactions resulted in heritable changes to the expression of those genes. Since then, paramutations have been found in humans and other animals, as well as other plant species including tomato, tobacco, petunia, and maize. In animals, paramutations may be important in mediating the occurrence of diseases like diabetes. Chandler and her co-workers have been investigating paramutations in maize at the b1 gene, which regulates the distribution of the purple pigment anthocyanin in plant tissues.

At the b1 locus, the paramutagenic allele, which causes light or stippled pigmentation arises spontaneously from the wild-type allele, which causes dark purple pigmentation. If a plant with the paramutagenic allele is crossed with a wild-type allele, the progeny get both alleles. However, the paramutagenic allele silences the wild-type allele and produces a plant with stippled rather than purple pigmentation. The silent state is then passed on in subsequent crosses.

Several different components may be involved in paramutation, although they may differ among species. One important player is an array of repeated non-coding DNA sequences that lies upstream of the gene sequence of the paramutagenic allele. Seven of these tandem repeats are required for b1 paramutation. If only three tandem repeats are present, there is only partial paramutagenic activity. One possibility is that these tandem repeats are involved in direct interactions of chromatin regions, which results in paramutation changes. However, RNA also appears to be part of the process. The gene mediator of paramutation1 (mop1), an RNA dependent RNA polymerase is absolutely required for paramutation silencing at the b1 locus as well as for several other maize genes. In Arabidopsis, this RNA polymerase is associated with the production of small, interfering RNAs (siRNA) that function in gene silencing in other contexts. The siRNA could thus act as an intermediary molecule, being sent to silence the homologous allele. A third component is the placement of methyl groups on the control sequence (promoter) of the wild-type gene. Gene methylation has been known for some time as a cell defense mechanism for silencing foreign DNA but is also functional in other cellular processes. In several species, such methylation is also directed by RNA molecules. None of these processes is likely to be sufficient by themselves to effect paramutation, but rather all of them may interact, although to varying degrees in different species.

The molecular components of paramutation probably arose as cell defense mechanisms against viral or bacterial DNA. They have evolved to serve the needs of plants that grow in complex and changing environments from which they cannot escape, but to which they may be able to adapt through mechanisms like paramutation. Indeed, two instances of paramutation are known to be influenced by temperature. This work has implications for engineering crops that may be able to adapt to higher temperatures or drought conditions, as well as for applications in human and veterinary medicine.

Vicki Chandler | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: Chromatin DNA RNA allele homologous maize paramutation

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>