Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how an injured embryo can regenerate itself

30.06.2008
Keep its organs in relative proportion

More than 80 years have passed since the German scientist Hans Spemann conducted his famous experiment that laid the foundations for the field of embryonic development. After dividing a salamander embryo in half, Spemann noticed that one half – specifically, the half that gives rise to the salamander's 'belly' (ventral) starts to wither away.

However, the other 'back' (dorsal) half that develops into its head, brain and spinal cord, continues to grow, regenerating the missing belly half and develops into a complete, though be it smaller, fully functional embryo.

Spemann then conducted another experiment, where this time, he removed a few cells from the back half of one embryo and transplanted them into the belly half of a different embryo. To his surprise, this gave rise to a Siamese twin embryo where an extra head was generated from the transplanted cells. Moreover, although the resulting embryo was smaller than normal, all its tissues and organs developed in the right proportions irrespective of its size, and functioned properly. For this work, Spemann received the Nobel Prize in Physiology or Medicine in 1935.

... more about:
»Embryo »Morphogen »Organ »Tissue

But how does this happen? How exactly is the half embryo able to maintain its tissues and organs in the correct proportions despite being smaller than a normal sized embryo?

Despite many years of research, this question has remained unanswered – until now. More than 80 years since Spemann's classic experiment, Profs. Naama Barkai, Benny Shilo and research student Danny Ben-Zvi of the Weizmann Institute of Science's Molecular Genetics Department, together with Prof. Abraham Fainsod of the Hebrew University-Hadassah School of Medicine, Jerusalem, have finally discovered the mechanisms involved.

Previous studies have shown that the growth and development of cells and organs within the embryo is somehow linked to a special group of substances called morphogens. These morphogens are produced in one particular area within the embryo and then spread throughout the entire embryo in varying concentrations. Scientists then began to realize that the fate of embryo cells, that is to say, the type of tissue and organ they are eventually going to develop into, is determined by the concentration of morphogen that they come into contact with. But this information does not answer the specific question as to how proportion is maintained between organs?

The idea for the present research came about when Weizmann Institute scientist Prof. Naama Barkai and her colleagues developed a mathematical model to describe interactions that occur within genetic networks of an embryo.

The data ascertained from this model suggest that the way morphogens spread throughout the embryo in different concentrations is different than previously thought. The team predicts that an inhibitor molecule, which is secreted from a localized source at one side of the embryo and can bind the morphogen, acts as a type of ferry that 'shuttles' the morphogen to the other side. Therefore, the mathematical model suggests that it is the interactions between the two substances that enable the embryo to keep the relative proportion between organs constant, irrespective of its size. Indeed, these predictions have been validated by experiments conducted on frog embryos by the research team.

The importance of the role of these morphogenic substances, as well as their mechanism of action, is evident by the fact that they have been conserved throughout evolution, where different variants can be found to exist in species ranging from worms to fruit flies and up to higher species including humans. Therefore, understanding the processes that govern embryonic cell development could have many implications. For example, it may lead, in the future, to scientists being able to repair injured tissues.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il
http://wis-wander.weizmann.ac.il

Further reports about: Embryo Morphogen Organ Tissue

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>