Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Pheromone Detection System Uncovered by Researchers

30.06.2008
Researchers at UT Southwestern Medical Center have overturned the current theory of how a pheromone works at the molecular level to trigger behavior in fruit flies.

The finding, if it proves true in other species, might lead to new ways to manipulate the actions of harmful insects, the researchers said.

They found that the pheromone, which affects mate recognition and sexual behavior, does not directly attach to nerve cells, as was previously thought. Rather, the pheromone first docks onto a free-floating protein in the insect’s antennae called LUSH.

This docking action causes LUSH to change shape. The reshaped protein, not the pheromone itself, is what activates the nerve cells, the researchers found. Their findings show that the pheromone only indirectly controls the animal’s behavior.

... more about:
»LUSH »Nerve »Pheromone »Protein »cVA

“If we can inhibit this molecular interaction, we might be better able to control pests that harm crops, carry malaria and so forth,” said Dr. Dean Smith, associate professor of pharmacology and neuroscience at UT Southwestern and senior author of the study, which appears online today and in Friday’s issue of the journal Cell.

Pheromones are molecules that an organism releases to trigger a specific behavior in other members of its species. Insects make wide use of pheromones to attract mates, signal the location of food, warn of attackers and provide other signals. Detection of pheromones is so sensitive that, in some cases, a single molecule is enough to trigger a response.

In agriculture, pheromones for some pest species are already used to protect crops by disrupting reproduction.

The current study used the fruit fly Drosophila melanogaster and focused on a pheromone called cVA (11-cis vaccenyl acetate). Only male flies produce cVA, but both males and females react to it. It is involved in clustering, mate recognition and sexual behavior.

The researchers examined the interaction of cVA with a type of nerve cell called T1 in the antennae of Drosophila. Holes in the antenna allow cVA to enter a fluid-filled chamber that surrounds these nerve cells. When the pheromone enters the antenna, the nerve cells fire.

The fluid surrounding the nerve cells also contains the LUSH protein, which was already known to bind to cVA. The prevailing theory is that LUSH proteins act as a carrier, picking up any cVA molecules that enter the antenna, transporting them to the nerve cells and releasing the pheromone molecules to bind directly to the nerve cells, Dr. Smith said.

In their experiments, Dr. Smith’s group examined the nerve cells’ firing patterns in genetically altered flies. The researchers also created variations of LUSH with varying abilities to change shape. One variant of LUSH, designed to mimic the shape it takes when bound to cVA, was capable of stimulating the nerve in the complete absence of the pheromone.

“LUSH is clearly important for activating the nerve,” Dr. Smith said. “The nerve cell’s receptor is designed to work only when cVA and LUSH are bound together. It’s a very unusual pathway that allows even single pheromone molecules to activate the nerves.”

The researchers are further examining the interaction between the pheromone and the nerve cell receptors.

Dr. Smith said if pheromone systems work this way in other insect species, researchers might be able to design compounds that block the action of pheromones, allowing them to manipulate and control pest behavior, including controlling mating and reproduction.

Dr. Tal Soo Ha, postdoctoral researcher in pharmacology at UT Southwestern, and researchers from the University of Colorado Denver also participated in the study.

The work was funded by the National Institutes of Health, with further support from the Howard Hughes Medical Institute and the University of Colorado Cancer Center.

Aline McKenzie | newswise
Further information:
http://www.utsouthwestern.edu/findfac/professional/0,2356,16780,00.html

Further reports about: LUSH Nerve Pheromone Protein cVA

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>