Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of fragile X and related gene fractures sleep

27.06.2008
Lack of both the fragile X syndrome gene and one that is related could account for sleep problems associated with the disorder, which is the common cause of inherited mental impairment, said a consortium of researchers led by scientists at Baylor College of Medicine in Houston. Their findings appear in a report in the current issue of the American Journal of Human Genetics.

Mice deficient in the fragile X mental retardation 1 gene (FMR1) and a similar gene called fragile X-related gene 2 (FXR2) have no rhythm to their wake and sleep pattern, said Dr. David Nelson, professor of molecular and human genetics at BCM and co-director of the Interdepartmental Program in Cell and Molecular Biology.

Normal mice have a sleep-wake cycle of just under 12 hours awake and 12 hours asleep. Exposed to light and dark, they are awake in the dark and asleep during the light because they are nocturnal animals. If they are kept in the dark, their cycle reduces by about 10 minutes per sleep-wake period but remains fairly normal. When mice do not have either FMR1 or FXR2, they have a slightly shorter cycle but the difference is not dramatic.

"However, the double-mutants (those without both genes) have no rhythm at all," said Nelson. "This has never been seen in a mouse before." The animals, usually kept in a cage with a wheel on which they run when awake, sleep a little, run a little, sleep a little – but there is no rhythm to it.

... more about:
»Cycle »FMR1 »FXR2 »animals

The finding is important because parents whose children have autism or fragile X report problems getting their children to go to sleep and stay asleep. Fragile X is the most common known cause of autism. While there are few studies on the topic, said Nelson, "the impression I have is that many fragile X patients have a period of time that's like an extended infancy when they don't settle into a typical sleep–wake period."

Understanding how the gene associated with fragile X affect the circadian clock or the sleep-wake cycle could help explain some of the symptoms experienced by patients, he said.

After ruling out the possibility that the animals without the two genes could not perceive light, Nelson collaborated with a group in The Netherlands to test whether the cell's "central clock" called the suprachiasmatic nucleus in the animals was normal. They concluded that the clock was normal but that somehow the expression of genes that govern it is altered in these mice.

"These genes (FMR1 and FXR2) are new players in the control of circadian (daily) rhythms," said Nelson. Currently, the genes are thought to have a role in translating RNAs (ribonucleic acids) – particularly at the receiving side of the connections between neurons called dendrites. Dendrites are characterized by the fine branches that reach out into tissue. Scientists theorize that FMR1 and FXR2 may be involved in transporting the RNAs to the areas of those branches where the synapse is present.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Cycle FMR1 FXR2 animals

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>