Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover chromatin-modifying enzyme crucial for normal development

15.07.2002

Over the past few years, covalent modifications of histone tails have emerged as an important mechanism of gene regulation in eukaryotes. Now, scientists have identified a major euchromatic histone methyltransferase in mammalian cells that is crucial for normal embryonic development, and possibly the prevention of cancer. In a report published in Genes & Development, Dr. Yoichi Shinkai and colleagues have identified a protein called G9a as an enzyme that adds a methyl group to the lysine 9 amino acid residue on the histone H3 proteins that are associated with euchromatic (transcriptionally active) DNA in the mammalian genome. The researchers genetically engineered live mice and murine stem cells to lack G9a in order to determine the function of the protein.

G9a-deficient mice died between embryonic day 9.5 and 12.5, and displayed severe developmental growth retardation. In fact, the G9a-deficient mouse embryos did not appear to develop beyond embryonic day 8.5. The researchers determined that this developmental growth arrest is due, at least in part, to aberrant ly high levels of programmed cell death during embryogenesis.

G9a-deficient stem cells displayed a marked decrease in histone H3 lysine 9 methylation, and were unable to differentiate into embryonic cell types in culture. Taken together, the in vivo and in vitro evidence suggests that G9a-mediated histone H3 lysine 9 methylation serves to regulate the expression of crucial genes during development.

Dr. Shinkai and colleagues found that one of the genes regulated by G9a-mediated methylation is Mage-2a, which encodes a tumor-specific protein whose function is currently unknown. The researchers show that Mage-2a expression is induced in G9a-deficient cells, and, as Dr. Shinkai points out, "This may suggest that deregulation of histone H3 lysine 9 methylation is involved in some type of tumorigenesis."

Further delineation of other G9a target genes will elucidate the full physiological role of euchromatic G9a-mediated histone H3 lysine 9 methylation, but as this work by Dr. Shinkai and colleagues shows, the role of G9a in development is already proving to be an important one.

Heather Cosel | EurekAlert

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>