Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover chromatin-modifying enzyme crucial for normal development

15.07.2002

Over the past few years, covalent modifications of histone tails have emerged as an important mechanism of gene regulation in eukaryotes. Now, scientists have identified a major euchromatic histone methyltransferase in mammalian cells that is crucial for normal embryonic development, and possibly the prevention of cancer. In a report published in Genes & Development, Dr. Yoichi Shinkai and colleagues have identified a protein called G9a as an enzyme that adds a methyl group to the lysine 9 amino acid residue on the histone H3 proteins that are associated with euchromatic (transcriptionally active) DNA in the mammalian genome. The researchers genetically engineered live mice and murine stem cells to lack G9a in order to determine the function of the protein.

G9a-deficient mice died between embryonic day 9.5 and 12.5, and displayed severe developmental growth retardation. In fact, the G9a-deficient mouse embryos did not appear to develop beyond embryonic day 8.5. The researchers determined that this developmental growth arrest is due, at least in part, to aberrant ly high levels of programmed cell death during embryogenesis.

G9a-deficient stem cells displayed a marked decrease in histone H3 lysine 9 methylation, and were unable to differentiate into embryonic cell types in culture. Taken together, the in vivo and in vitro evidence suggests that G9a-mediated histone H3 lysine 9 methylation serves to regulate the expression of crucial genes during development.

Dr. Shinkai and colleagues found that one of the genes regulated by G9a-mediated methylation is Mage-2a, which encodes a tumor-specific protein whose function is currently unknown. The researchers show that Mage-2a expression is induced in G9a-deficient cells, and, as Dr. Shinkai points out, "This may suggest that deregulation of histone H3 lysine 9 methylation is involved in some type of tumorigenesis."

Further delineation of other G9a target genes will elucidate the full physiological role of euchromatic G9a-mediated histone H3 lysine 9 methylation, but as this work by Dr. Shinkai and colleagues shows, the role of G9a in development is already proving to be an important one.

Heather Cosel | EurekAlert

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>