Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Different type of colon cancer vaccine reduces disease spread

26.06.2008
Taking advantage of the fact that the intestines have a separate immune system from the rest of the body, scientists at the Kimmel Cancer Center at Jefferson in Philadelphia have found a way to immunize mice against the development of metastatic disease.

Reporting online Tuesday, June 24, 2008 in the Journal of the National Cancer Institute, Scott Waldman, M.D., Ph.D., professor and chair of Pharmacology and Experimental Therapeutics at Jefferson Medical College of Thomas Jefferson University and his co-workers have shown that mice immunized with an intestinal protein developed fewer lung and liver metastases after injection with colon cancer cells than did control animals that were not immunized. The work may portend the development of a different kind of cancer vaccine, the researchers say, that may help prevent disease recurrence.

One of the reasons that cancer vaccines have been disappointing in many cases is the lack of immune system-alerting protein antigens that are specific for tumors only. According to Dr. Waldman, mucosal cells, which line the intestines (colon cancer arises from mucosal cells, and mucosal cell proteins continue to be expressed even after they become cancer) are essentially compartmentalized and possess a separate and distinct immune system from the body's general immune system. He and his group thought that such proteins would be seen as foreign by the latter system and be useful for anti-cancer vaccines.

Dr. Waldman, postdoctoral fellow Adam Snook, Ph.D., and their colleagues engineered viruses – adenovirus, vaccinia and rabies – to express the protein guanylyl cyclase C (GCC), which is normally found in the intestinal lining (and in metastatic colon cancer). The researchers injected the animals with colon cancer cells before or after immunization.

... more about:
»Antigen »GCC »Vaccine »Waldman »colon »intestine »mucosal »systemic

They found that the vaccinated animals developed fewer metastases in the liver and lung – 90 percent and 75 percent, respectively – compared with control animals. Vaccination also prolonged overall survival, with a median of 38 days in immunized animals and 29 days in control animals.

"We think this identifies a novel class of vaccine candidate targets for tumors that originate and metastasize from mucosa, like colorectal cancer," Dr. Waldman says. "Mucosal cells turn into cancer, invade the wall of the intestine, breech the compartment and metastasize, carrying with them all the antigens that typically reside in the mucosal system. They continue to be expressed by tumors that originate in the mucosa even when those tumors metastasize into the systemic compartment where they don't belong."

Dr. Waldman sees GCC as "the poster child" for mucosal antigens. "Immunizing an animal or person systemically with GCC will be recognized to some degree as foreign, and the body will mount an immune response in the systemic compartment," he explains. "We think that the immune response will be effective against the cancer but it won't cross over into the intestines and cause autoimmune disease."

As a result, he says, the immune responses against GCC could be used both prophylactically and therapeutically. "The target populations for such a vaccine are patients who have had surgery and adjuvant chemotherapy and have no evidence of disease. If they have recurrence, it's from microscopic disease."

"This paper demonstrates the profile of a model cancer mucosal antigen class that can generate systemic immune responses," he says. "There is incomplete systemic tolerance to these antigens, as we predicted, and that the immune responses have anti-tumor efficacy and the animals are free of autoimmune disease."

The researchers suggest that this approach of using antigens from tumors originating in immune-restricted sites might be extended to other cancers that originate from mucosal cells, including cancers of the head and neck, lung, breast, vagina, and bladder. Adding mucosal antigens from the same tumor type might also enable the development of a "polyvalent" vaccine, Dr. Waldman notes.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Antigen GCC Vaccine Waldman colon intestine mucosal systemic

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>