Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splenic ellipsoids might be significant in the early development of AA amyloidosis

26.06.2008
During the course of her PhD studies, Randi Sørby demonstrated that ellipsoids, small filtering units for blood in the spleen, might be significant in the development of AA amyloidosis.

AA amyloidosis is a potential complication of chronic inflammation or infection, for example, rheumatoid arthritis and tuberculosis, and is characterised by systematic deposition of protein fibrils in the tissues of organs such as the spleen and liver. Similar deposition, but of other proteins, also occurs in diseases such as Alzheimer's disease, Parkinson’s disease, and prion-associated disease ("mad cow disease").

In her thesis, Randi Sørby used experimental amyloidosis in the mink as a model to study how amyloid deposition arises in different parts of the spleen. This model was chosen because the mink has especially well-developed ellipsoids, which are lacking in the more commonly-used experimental animals such as mouse and rat, but which are found in most other mammals, including man. Studies have shown that ellipsoids are central structures in amyloid deposition and that they play an early role in the development of the disease.

In addition to amyloid fibrils, other proteins have been demonstrated (amyloid P component and apolipoproteins) and long polysaccharides (glycosaminoglycans)that may also be significant for the development of the depositions. One particularly interesting find was that several of these molecules were already present normally in the ellipsoids, which may help to explain why ellipsoids are involved so early.

... more about:
»Amyloid »Sørby »amyloidosis »ellipsoids »mink »significant

The structure and general functions of ellipsoids were also studied. Sørby showed that ellipsoids also in mink are an effective filter of blood plasma. Various substances injected into the blood, such as carbon particles, small plastic spheres, and antigen-antibody complexes, were effectively removed by cells in the wall of the ellipsoids. These filtering qualities very likely play a role in he the development of the amyloid depositions.

The experimental model of amyloidosis in the mink has been further refined by injecting an extract of amyloid-containing tissue ("amyloid enhancing factor"). In this method, amyloid deposition develops significantly faster and shows a more predictable progression. This will enable future studies of the ellipsoid's role in the earliest phases of amyloidosis development.

Cand. med. vet. Randi Sørby defended her thesis for the degree of Philosophiae Doctor(PhD) on May 30, 2008, with the title "The involvement of splenic microenvironments, with emphasis on the ellipsoids, in experimental AA amyloidosis in mink."

The work was carried out at the Department of Basic Sciences & Aquatic Medicine of the Norwegian School of Veterinary Science, and was a collaboration with Dr. med. Tale Nordbye Wien and Professor Gunnar Husby of the Rikshospitalet University Hospital HF.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no
http://www.veths.no/105/English/Kima/Splenic-ellipsoids-might-be-significant-in-the-early-development-of-AA-amyloidosis/

Further reports about: Amyloid Sørby amyloidosis ellipsoids mink significant

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>