Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing the gap between fish and land animals

26.06.2008
New exquisitely preserved fossils from Latvia cast light on a key event in our own evolutionary history, when our ancestors left the water and ventured onto land. Swedish researchers Per Ahlberg and Henning Blom from Uppsala University have reconstructed parts of the animal and explain the transformation in the new issue of Nature.

It has long been known that the first backboned land animals or "tetrapods" - the ancestors of amphibians, reptiles, birds and mammals, including ourselves - evolved from a group of fishes about 370 million years ago during the Devonian period. However, even though scientists had discovered fossils of tetrapod-like fishes and fish-like tetrapods from this period, these were still rather different from each other and did not give a complete picture of the intermediate steps in the transition.

In 2006 the situation changed dramatically with the discovery of an almost perfectly intermediate fish-tetrapod, Tiktaalik, but even so a gap remained between this animal and the earliest true tetrapods (animals with limbs rather than paired fins). Now, new fossils of the extremely primitive tetrapod Ventastega from the Devonian of Latvia cast light on this key phase of the transition.

“Ventastega was first described from fragmentary material in 1994; since then, excavations have produced lots of new superbly preserved fossils, allowing us to reconstruct the whole head, shoulder girdle and part of the pelvis”, says Professor Per Ahlberg at the Department of Physiology and Developmental Biology, Uppsala University.

... more about:
»Ahlberg »Tiktaalik »fossils »tetrapod

The recontructions made by Professor Ahlberg and Assistant Professor Henning Blom together with British and Latvian colleagues show that Ventastega was more fish-like than any of its contemporaries, such as Acanthostega. The shape of its skull, and the pattern of teeth in its jaws, are neatly intermediate between those of Tiktaalik and Acanthostega.

“However, the shoulder girdle and pelvis are almost identical to those of Acanthostega, and the shoulder girdle is quite different from that of Tiktaalik (the pelvis of Tiktaalik is unknown), suggesting that the transformation from paired fins to limbs had already occurred. It appears that different parts of the body evolved at different speeds during the transition from water to land”, says Per Ahlberg.

Per Ahlberg | alfa
Further information:
http://www.uu.se

Further reports about: Ahlberg Tiktaalik fossils tetrapod

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>