Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Closing the gap between fish and land animals

New exquisitely preserved fossils from Latvia cast light on a key event in our own evolutionary history, when our ancestors left the water and ventured onto land. Swedish researchers Per Ahlberg and Henning Blom from Uppsala University have reconstructed parts of the animal and explain the transformation in the new issue of Nature.

It has long been known that the first backboned land animals or "tetrapods" - the ancestors of amphibians, reptiles, birds and mammals, including ourselves - evolved from a group of fishes about 370 million years ago during the Devonian period. However, even though scientists had discovered fossils of tetrapod-like fishes and fish-like tetrapods from this period, these were still rather different from each other and did not give a complete picture of the intermediate steps in the transition.

In 2006 the situation changed dramatically with the discovery of an almost perfectly intermediate fish-tetrapod, Tiktaalik, but even so a gap remained between this animal and the earliest true tetrapods (animals with limbs rather than paired fins). Now, new fossils of the extremely primitive tetrapod Ventastega from the Devonian of Latvia cast light on this key phase of the transition.

“Ventastega was first described from fragmentary material in 1994; since then, excavations have produced lots of new superbly preserved fossils, allowing us to reconstruct the whole head, shoulder girdle and part of the pelvis”, says Professor Per Ahlberg at the Department of Physiology and Developmental Biology, Uppsala University.

... more about:
»Ahlberg »Tiktaalik »fossils »tetrapod

The recontructions made by Professor Ahlberg and Assistant Professor Henning Blom together with British and Latvian colleagues show that Ventastega was more fish-like than any of its contemporaries, such as Acanthostega. The shape of its skull, and the pattern of teeth in its jaws, are neatly intermediate between those of Tiktaalik and Acanthostega.

“However, the shoulder girdle and pelvis are almost identical to those of Acanthostega, and the shoulder girdle is quite different from that of Tiktaalik (the pelvis of Tiktaalik is unknown), suggesting that the transformation from paired fins to limbs had already occurred. It appears that different parts of the body evolved at different speeds during the transition from water to land”, says Per Ahlberg.

Per Ahlberg | alfa
Further information:

Further reports about: Ahlberg Tiktaalik fossils tetrapod

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>