Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing the gap between fish and land animals

26.06.2008
New exquisitely preserved fossils from Latvia cast light on a key event in our own evolutionary history, when our ancestors left the water and ventured onto land. Swedish researchers Per Ahlberg and Henning Blom from Uppsala University have reconstructed parts of the animal and explain the transformation in the new issue of Nature.

It has long been known that the first backboned land animals or "tetrapods" - the ancestors of amphibians, reptiles, birds and mammals, including ourselves - evolved from a group of fishes about 370 million years ago during the Devonian period. However, even though scientists had discovered fossils of tetrapod-like fishes and fish-like tetrapods from this period, these were still rather different from each other and did not give a complete picture of the intermediate steps in the transition.

In 2006 the situation changed dramatically with the discovery of an almost perfectly intermediate fish-tetrapod, Tiktaalik, but even so a gap remained between this animal and the earliest true tetrapods (animals with limbs rather than paired fins). Now, new fossils of the extremely primitive tetrapod Ventastega from the Devonian of Latvia cast light on this key phase of the transition.

“Ventastega was first described from fragmentary material in 1994; since then, excavations have produced lots of new superbly preserved fossils, allowing us to reconstruct the whole head, shoulder girdle and part of the pelvis”, says Professor Per Ahlberg at the Department of Physiology and Developmental Biology, Uppsala University.

... more about:
»Ahlberg »Tiktaalik »fossils »tetrapod

The recontructions made by Professor Ahlberg and Assistant Professor Henning Blom together with British and Latvian colleagues show that Ventastega was more fish-like than any of its contemporaries, such as Acanthostega. The shape of its skull, and the pattern of teeth in its jaws, are neatly intermediate between those of Tiktaalik and Acanthostega.

“However, the shoulder girdle and pelvis are almost identical to those of Acanthostega, and the shoulder girdle is quite different from that of Tiktaalik (the pelvis of Tiktaalik is unknown), suggesting that the transformation from paired fins to limbs had already occurred. It appears that different parts of the body evolved at different speeds during the transition from water to land”, says Per Ahlberg.

Per Ahlberg | alfa
Further information:
http://www.uu.se

Further reports about: Ahlberg Tiktaalik fossils tetrapod

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>