Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Studies of Cell Traits Nets Big Award for Researcher

University of Wisconsin-Madison biochemist Doug Weibel may not be able to bend or shape cells any way he wants to - yet.

However, Weibel's efforts to uncover the molecular choreography within the cell that governs their physical, chemical and physiological attributes - including shape, behavior and development - have earned the young scientist a prestigious Searle Scholar Award. The $300,000 award over three years was last conferred on a UW-Madison faculty member in 1997 when pharmacy professor Ben Shen was recognized.

The award will support Weibel's exploration of some of the fundamental mysteries of bacterial cells, work that promises to make them more amenable for study and manipulation in the interest of such things as the development of biofuels and new antibiotics.

"We work specifically on bacteria," says Weibel, who joined the UW-Madison faculty in 2006. "One of the things we're really interested in is how bacteria sense their environment. For example, how can a cell sense if it's on a surface or in a liquid?"

... more about:
»Cell »Weibel »bacterial

How cells respond to their environments, Weibel explains, is a complex mix of physical and chemical variables, and in the case of bacteria, those variables may vary from organism to organism. One critical problem Weibel's group is addressing is why it is so difficult to tame most bacteria, making it impossible for many important microorganisms to be studied in the lab.

It is widely believed that more than 99 percent of the world's microbes can't be isolated and cultured using current methods. Weibel's approach to the problem, which is interdisciplinary in the extreme and weaves chemistry, material science and engineering into the equation, involves developing new polymer structures that mimic the natural habitats of different classes of bacteria. By designing microenvironments in tune with different kinds of bacteria, it may be possible to bring them within reach of science, affording better opportunities to thwart pathogenic microbes or tame those that might be useful for converting biomass to sugars that can be used in biofuels.

Another thrust of the Weibel lab is helping to figure out why bacteria behave as they do. For example, is there such a thing as collective behavior in bacteria?

"We're very interested in the question of how does collective behavior in populations of bacteria arise," Weibel says. "Emerging behavior is a property of a system you can't predict from the sum of the individual components. The swarming of bacterial cells on surfaces is a fascinating example of what might be considered emergent or multicellular behavior."

Such issues are important, notes Weibel, as swarming behavior in bacteria can switch on genes that transform benign bacterial cells into pathogens (see animation of swarming behavior at

For instance, the bacterial films that form on catheters and other biomedical devices and expose patients to serious infection arise from a bacterium's tendency to live and migrate collectively.

Weibel is also attempting to develop imaging techniques that will help science resolve how the internal scaffolding of cells, the cytoskeleton, is organized in space and time. That, in turn, could lead to new methods to alter the shape of cells.

"In bacteria, cell shape is typically conserved. A rod-shaped cell always produces a rod-shaped offspring and a sphere always produces spheres," according to Weibel. "But it's possible to turn a rod-shaped bacterium into a cube or a right-handed coil. Or you can take a rod and engineer a kink in it. We want to understand how shape is connected to the underlying cytoskeleton and how this system controls the spatial and temporal location of other components in the cell."

Teasing out those secrets, he says, could help scientists develop novel antibiotics at a time when there is a critical need to replenish the antimicrobial armamentarium in response to germs that have evolved resistance to conventional antibiotics.

Terry Devitt | newswise
Further information:

Further reports about: Cell Weibel bacterial

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>