Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies of Cell Traits Nets Big Award for Researcher

26.06.2008
University of Wisconsin-Madison biochemist Doug Weibel may not be able to bend or shape cells any way he wants to - yet.

However, Weibel's efforts to uncover the molecular choreography within the cell that governs their physical, chemical and physiological attributes - including shape, behavior and development - have earned the young scientist a prestigious Searle Scholar Award. The $300,000 award over three years was last conferred on a UW-Madison faculty member in 1997 when pharmacy professor Ben Shen was recognized.

The award will support Weibel's exploration of some of the fundamental mysteries of bacterial cells, work that promises to make them more amenable for study and manipulation in the interest of such things as the development of biofuels and new antibiotics.

"We work specifically on bacteria," says Weibel, who joined the UW-Madison faculty in 2006. "One of the things we're really interested in is how bacteria sense their environment. For example, how can a cell sense if it's on a surface or in a liquid?"

... more about:
»Cell »Weibel »bacterial

How cells respond to their environments, Weibel explains, is a complex mix of physical and chemical variables, and in the case of bacteria, those variables may vary from organism to organism. One critical problem Weibel's group is addressing is why it is so difficult to tame most bacteria, making it impossible for many important microorganisms to be studied in the lab.

It is widely believed that more than 99 percent of the world's microbes can't be isolated and cultured using current methods. Weibel's approach to the problem, which is interdisciplinary in the extreme and weaves chemistry, material science and engineering into the equation, involves developing new polymer structures that mimic the natural habitats of different classes of bacteria. By designing microenvironments in tune with different kinds of bacteria, it may be possible to bring them within reach of science, affording better opportunities to thwart pathogenic microbes or tame those that might be useful for converting biomass to sugars that can be used in biofuels.

Another thrust of the Weibel lab is helping to figure out why bacteria behave as they do. For example, is there such a thing as collective behavior in bacteria?

"We're very interested in the question of how does collective behavior in populations of bacteria arise," Weibel says. "Emerging behavior is a property of a system you can't predict from the sum of the individual components. The swarming of bacterial cells on surfaces is a fascinating example of what might be considered emergent or multicellular behavior."

Such issues are important, notes Weibel, as swarming behavior in bacteria can switch on genes that transform benign bacterial cells into pathogens (see animation of swarming behavior at http://www.news.wisc.edu/video/bact/052908_SwarmingEdge/).

For instance, the bacterial films that form on catheters and other biomedical devices and expose patients to serious infection arise from a bacterium's tendency to live and migrate collectively.

Weibel is also attempting to develop imaging techniques that will help science resolve how the internal scaffolding of cells, the cytoskeleton, is organized in space and time. That, in turn, could lead to new methods to alter the shape of cells.

"In bacteria, cell shape is typically conserved. A rod-shaped cell always produces a rod-shaped offspring and a sphere always produces spheres," according to Weibel. "But it's possible to turn a rod-shaped bacterium into a cube or a right-handed coil. Or you can take a rod and engineer a kink in it. We want to understand how shape is connected to the underlying cytoskeleton and how this system controls the spatial and temporal location of other components in the cell."

Teasing out those secrets, he says, could help scientists develop novel antibiotics at a time when there is a critical need to replenish the antimicrobial armamentarium in response to germs that have evolved resistance to conventional antibiotics.

Terry Devitt | newswise
Further information:
http://www.news.wisc.edu/video/bact/052908_SwarmingEdge/
http://www.biochem.wisc.edu

Further reports about: Cell Weibel bacterial

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>