Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies of Cell Traits Nets Big Award for Researcher

26.06.2008
University of Wisconsin-Madison biochemist Doug Weibel may not be able to bend or shape cells any way he wants to - yet.

However, Weibel's efforts to uncover the molecular choreography within the cell that governs their physical, chemical and physiological attributes - including shape, behavior and development - have earned the young scientist a prestigious Searle Scholar Award. The $300,000 award over three years was last conferred on a UW-Madison faculty member in 1997 when pharmacy professor Ben Shen was recognized.

The award will support Weibel's exploration of some of the fundamental mysteries of bacterial cells, work that promises to make them more amenable for study and manipulation in the interest of such things as the development of biofuels and new antibiotics.

"We work specifically on bacteria," says Weibel, who joined the UW-Madison faculty in 2006. "One of the things we're really interested in is how bacteria sense their environment. For example, how can a cell sense if it's on a surface or in a liquid?"

... more about:
»Cell »Weibel »bacterial

How cells respond to their environments, Weibel explains, is a complex mix of physical and chemical variables, and in the case of bacteria, those variables may vary from organism to organism. One critical problem Weibel's group is addressing is why it is so difficult to tame most bacteria, making it impossible for many important microorganisms to be studied in the lab.

It is widely believed that more than 99 percent of the world's microbes can't be isolated and cultured using current methods. Weibel's approach to the problem, which is interdisciplinary in the extreme and weaves chemistry, material science and engineering into the equation, involves developing new polymer structures that mimic the natural habitats of different classes of bacteria. By designing microenvironments in tune with different kinds of bacteria, it may be possible to bring them within reach of science, affording better opportunities to thwart pathogenic microbes or tame those that might be useful for converting biomass to sugars that can be used in biofuels.

Another thrust of the Weibel lab is helping to figure out why bacteria behave as they do. For example, is there such a thing as collective behavior in bacteria?

"We're very interested in the question of how does collective behavior in populations of bacteria arise," Weibel says. "Emerging behavior is a property of a system you can't predict from the sum of the individual components. The swarming of bacterial cells on surfaces is a fascinating example of what might be considered emergent or multicellular behavior."

Such issues are important, notes Weibel, as swarming behavior in bacteria can switch on genes that transform benign bacterial cells into pathogens (see animation of swarming behavior at http://www.news.wisc.edu/video/bact/052908_SwarmingEdge/).

For instance, the bacterial films that form on catheters and other biomedical devices and expose patients to serious infection arise from a bacterium's tendency to live and migrate collectively.

Weibel is also attempting to develop imaging techniques that will help science resolve how the internal scaffolding of cells, the cytoskeleton, is organized in space and time. That, in turn, could lead to new methods to alter the shape of cells.

"In bacteria, cell shape is typically conserved. A rod-shaped cell always produces a rod-shaped offspring and a sphere always produces spheres," according to Weibel. "But it's possible to turn a rod-shaped bacterium into a cube or a right-handed coil. Or you can take a rod and engineer a kink in it. We want to understand how shape is connected to the underlying cytoskeleton and how this system controls the spatial and temporal location of other components in the cell."

Teasing out those secrets, he says, could help scientists develop novel antibiotics at a time when there is a critical need to replenish the antimicrobial armamentarium in response to germs that have evolved resistance to conventional antibiotics.

Terry Devitt | newswise
Further information:
http://www.news.wisc.edu/video/bact/052908_SwarmingEdge/
http://www.biochem.wisc.edu

Further reports about: Cell Weibel bacterial

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>