Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple extremist thrives under inhospitable conditions

25.06.2008
HZI scientists discovers new protein that repairs DNA under extreme conditions

Mild environmental conditions are a prerequisite for life. Strong acids or dissolved metallic salts in high concentrations are detrimental to both humans and to simpler life forms, such as bacteria. Such conditions destroy proteins, ensuring that all biological functions in the cells come to a standstill. So what do we find at the limits of hostile conditions where we still find life?

Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig (Germany) have joined up with colleagues from Spain and Great Britain to identify an enzyme that requires acids and dissolved metals in order to function. The team describes its findings regarding the extreme protein of the archaebacterium Ferroplasma acidiphilum in the latest online issue of the US research journal PNAS.

HZI scientist Dr. Olga Golyshina discovered Ferroplasma ten years ago and has been endeavouring to unlock its secrets ever since. "This organism is ideally adapted to extremely hostile environments. It likes to live in highly acidic solutions containing toxic heavy metals. It is unable to exist at all under normal conditions," she says, describing her research object. "We recently noted that Ferroplasma is unique in the world of living organisms, as it contains iron in high concentrations. Now we aim to discover how its proteins function under such extreme conditions."

... more about:
»DNA »Ferroplasma »HZI »Iron »acidic »inhospitable »ligase

For this purpose the team has selected a so-called DNA ligase. Enzymes of this type play a central role in important metabolic processes such as the duplication of genetic material in dividing cells and the repair of genetic damage. All DNA ligases investigated so far, including the DNA ligases of the so-called extremophile microorganisms that live in particularly inhospitable habitats which are either acidic, alkaline, hot or cold, , require mild environmental conditions. "The Ferroplasma DNA ligase is unique," states Olga Golyshina: "It actually requires extremely acidic conditions to work."

Iron gives the protein a purple colour

But this is not the only thing that scientists find surprising about this survival expert: "All of the DNA ligases studied so far do not contain iron, but require magnesium or potassium to function. Extraordinarily, the DNA ligase of Ferroplasma contains iron and does not need either magnesium or potassium. The iron is essential: removal results in loss of activity and, interestingly, its wonderful purple coloration."However, the colour is less fascinating than the fact that Ferroplasma does not die as a result of the ordinarily toxic high concentration of iron in its cells which would severely damage genetic material in other cells, triggering mutations.

"The fact that an enzyme contains metal ions that damage DNA for the repair of DNA seems contradictory," says project partner Prof. Peter Golyshin, who works at the HZI and Bangor University in Wales (GB). He suspects that the Ferroplasma genus occupied its ecological niche early in evolution. At that time the earth was very inhospitable; acids and metals in soluble form were everywhere. Peter Golyshin: "Maybe the ancestors of Ferroplasma integrated these substances into their metabolism. And afterwards they never left its environment, even as this became increasingly scarce on earth."

Prof. Ken Timmis, Head of the Environmental Microbiology Group at HZI, is considering the future uses of the findings of the team: "Enzymes are required for many biotechnological applications. The chemical conditions under which these processes occur are often rather hostile. Enzymes from Ferroplasma, such as DNA ligase, clearly are ideally suited for processes that require hostile conditions, so this microbe may represent a rich source of biological catalysts not thus far obtainable from any other source”. Timmis also considers applications in the field of medicine a possibility: "The possibility of DNA repair under acidic conditions may ultimately provide a new treatment option for disease conditions characterized by over-acidification of cells that favour the formation of tumours."

Hannes Schlender | alfa
Further information:
http://www.helmholtz-hzi.de

Further reports about: DNA Ferroplasma HZI Iron acidic inhospitable ligase

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>