Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purple extremist thrives under inhospitable conditions

25.06.2008
HZI scientists discovers new protein that repairs DNA under extreme conditions

Mild environmental conditions are a prerequisite for life. Strong acids or dissolved metallic salts in high concentrations are detrimental to both humans and to simpler life forms, such as bacteria. Such conditions destroy proteins, ensuring that all biological functions in the cells come to a standstill. So what do we find at the limits of hostile conditions where we still find life?

Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig (Germany) have joined up with colleagues from Spain and Great Britain to identify an enzyme that requires acids and dissolved metals in order to function. The team describes its findings regarding the extreme protein of the archaebacterium Ferroplasma acidiphilum in the latest online issue of the US research journal PNAS.

HZI scientist Dr. Olga Golyshina discovered Ferroplasma ten years ago and has been endeavouring to unlock its secrets ever since. "This organism is ideally adapted to extremely hostile environments. It likes to live in highly acidic solutions containing toxic heavy metals. It is unable to exist at all under normal conditions," she says, describing her research object. "We recently noted that Ferroplasma is unique in the world of living organisms, as it contains iron in high concentrations. Now we aim to discover how its proteins function under such extreme conditions."

... more about:
»DNA »Ferroplasma »HZI »Iron »acidic »inhospitable »ligase

For this purpose the team has selected a so-called DNA ligase. Enzymes of this type play a central role in important metabolic processes such as the duplication of genetic material in dividing cells and the repair of genetic damage. All DNA ligases investigated so far, including the DNA ligases of the so-called extremophile microorganisms that live in particularly inhospitable habitats which are either acidic, alkaline, hot or cold, , require mild environmental conditions. "The Ferroplasma DNA ligase is unique," states Olga Golyshina: "It actually requires extremely acidic conditions to work."

Iron gives the protein a purple colour

But this is not the only thing that scientists find surprising about this survival expert: "All of the DNA ligases studied so far do not contain iron, but require magnesium or potassium to function. Extraordinarily, the DNA ligase of Ferroplasma contains iron and does not need either magnesium or potassium. The iron is essential: removal results in loss of activity and, interestingly, its wonderful purple coloration."However, the colour is less fascinating than the fact that Ferroplasma does not die as a result of the ordinarily toxic high concentration of iron in its cells which would severely damage genetic material in other cells, triggering mutations.

"The fact that an enzyme contains metal ions that damage DNA for the repair of DNA seems contradictory," says project partner Prof. Peter Golyshin, who works at the HZI and Bangor University in Wales (GB). He suspects that the Ferroplasma genus occupied its ecological niche early in evolution. At that time the earth was very inhospitable; acids and metals in soluble form were everywhere. Peter Golyshin: "Maybe the ancestors of Ferroplasma integrated these substances into their metabolism. And afterwards they never left its environment, even as this became increasingly scarce on earth."

Prof. Ken Timmis, Head of the Environmental Microbiology Group at HZI, is considering the future uses of the findings of the team: "Enzymes are required for many biotechnological applications. The chemical conditions under which these processes occur are often rather hostile. Enzymes from Ferroplasma, such as DNA ligase, clearly are ideally suited for processes that require hostile conditions, so this microbe may represent a rich source of biological catalysts not thus far obtainable from any other source”. Timmis also considers applications in the field of medicine a possibility: "The possibility of DNA repair under acidic conditions may ultimately provide a new treatment option for disease conditions characterized by over-acidification of cells that favour the formation of tumours."

Hannes Schlender | alfa
Further information:
http://www.helmholtz-hzi.de

Further reports about: DNA Ferroplasma HZI Iron acidic inhospitable ligase

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>