Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells have an appetite for micro-doughnuts

25.06.2008
Just like humans, liver cells can’t resist eating just one or two small doughnuts, say chemists from Scotland in the Royal Society of Chemistry journal Chemical Communications.

Exploiting liver cells’ appetite for polystyrene ring “doughnuts”, just a few microns across, might give scientists a new way to deliver drugs selectively, potentially eliminating nasty side effects of life-saving treatments such as chemotherapy.

Mark Bradley and colleagues at the University of Edinburgh, UK, serendipitously made the polymer doughnuts while studying potential drug-carrying microparticles.

While synthesising micro-spheres, the team added a small amount of dioxane to their usual ethanol solvent. To their surprise, the resulting microparticles were regular in size and shape, with a hole through the middle like a doughnut.

... more about:
»Cell »doughnut

“Their unique and highly uniform structure was immediately interesting to us and we considered the possible applications they may have – one of which was as carrier particles for cellular delivery,” said Bradley.

When they tested the uptake of the doughnuts into different types of cells, the team found they had an overwhelming preference for liver cells.

The high cell specificity these doughnuts showed led the team to conduct extensive in vivo testing in rats. The doughnuts were injected into the tail and within four hours they were detected solely in the liver region (yellow in image), with no adverse effects observed in the animal after the experiment.

Bradley believes there are other uses for the micro-doughnuts besides drug delivery, such as filtration or purification devices, but the team will be keen to develop their ability to selectively deliver drugs into cells.

Jon Edwards | alfa
Further information:
http://www.rsc.org/Publishing/Journals/CC/article.asp?doi=b805323e

Further reports about: Cell doughnut

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>