Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells have an appetite for micro-doughnuts

25.06.2008
Just like humans, liver cells can’t resist eating just one or two small doughnuts, say chemists from Scotland in the Royal Society of Chemistry journal Chemical Communications.

Exploiting liver cells’ appetite for polystyrene ring “doughnuts”, just a few microns across, might give scientists a new way to deliver drugs selectively, potentially eliminating nasty side effects of life-saving treatments such as chemotherapy.

Mark Bradley and colleagues at the University of Edinburgh, UK, serendipitously made the polymer doughnuts while studying potential drug-carrying microparticles.

While synthesising micro-spheres, the team added a small amount of dioxane to their usual ethanol solvent. To their surprise, the resulting microparticles were regular in size and shape, with a hole through the middle like a doughnut.

... more about:
»Cell »doughnut

“Their unique and highly uniform structure was immediately interesting to us and we considered the possible applications they may have – one of which was as carrier particles for cellular delivery,” said Bradley.

When they tested the uptake of the doughnuts into different types of cells, the team found they had an overwhelming preference for liver cells.

The high cell specificity these doughnuts showed led the team to conduct extensive in vivo testing in rats. The doughnuts were injected into the tail and within four hours they were detected solely in the liver region (yellow in image), with no adverse effects observed in the animal after the experiment.

Bradley believes there are other uses for the micro-doughnuts besides drug delivery, such as filtration or purification devices, but the team will be keen to develop their ability to selectively deliver drugs into cells.

Jon Edwards | alfa
Further information:
http://www.rsc.org/Publishing/Journals/CC/article.asp?doi=b805323e

Further reports about: Cell doughnut

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>