Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Find Out What's Eating Bats, Biologist Takes to Barn Rooftops

25.06.2008
By providing a clearer picture of how bat flies, potential disease vectors, adapt to bats, the research of University at Buffalo biologist Katharine Dittmar de la Cruz may shed light on White Nose Syndrome, which has killed tens of thousands of bats in the northeastern U.S.

Bloodsucking pests like bat fleas and bat flies may not sound very appealing to the rest of us, but to University at Buffalo biologist Katharina Dittmar de la Cruz, Ph.D., they are among the most successful creatures evolution has ever produced.

"From an historical perspective, they have been around forever, they don't die out," said Dittmar, assistant professor of biological sciences in UB's College of Arts and Sciences. "How they have been able to occupy a small ecological niche by adapting to their specific hosts, proliferating and surviving for millions of years is the focus of my research."

By providing a clearer picture of how these potential disease vectors adapt to bats, her research may shed light on White Nose Syndrome, which has killed tens of thousands of bats in the northeastern U.S. and which some feel may parallel the Colony Collapse Disorder that has devastated honey bee colonies in recent years.

... more about:
»Pathogen »Syndrome »parasites »vectors

During the week of June 23, Dittmar and her UB student lab assistant will be taking to rural rooftops in Western New York and nearby Canada at sunset, briefly trapping bats to record data and learn more about the parasites that feast on bats.

"We don't know yet if bat flies are vectors of disease, but it's very likely," she said. "Every other parasitic organism transmits pathogens. Bat flies are adapted to bats and only bats. They're ectoparasites, meaning they are blood-sucking creatures, living in the fur of bats, so they are like little vampires. The bats cannot get rid of them because they interlock with individual hairs on the bat's fur."

She noted that bat flies pose no threat to humans.

Dittmar is the world's only researcher working to genetically characterize bat flies, so it's a field that she says is wide open for discovery.

To obtain genetic data, she takes samples of the DNA of bat flies and compares them against Genbank, a huge database containing the genes of thousands of species.

The genetic information provides insight into which bacteria and viruses may be transmitted among bat flies and to bats by parasites.

"If we find that these bacteria or viruses are highly prevalent in bat populations, then we will want to do infection studies," she said.

If it turns out that a known pathogen is causing White Nose Syndrome, then they will be able to take a comprehensive genomics approach to the issue.

What complicates the work is that researchers know very little about bats in general, she said.

"As researchers, we sit in meetings where we discuss what might be killing the bats and we acknowledge that we don't know enough about many aspects of their lives," she said. "It's interesting that we are only starting to do comprehensive research on bats now that disease has struck."

She added that it's similar to what happened with the massive deaths that have struck honey bee colonies in recent years, the exact cause of which still remains a mystery.

Dittmar stressed that there is no proven connection between White Nose Syndrome in bats and Colony Collapse Disorder in bees.

"Still, it's interesting to see two diseases that massively affect invertebrates and vertebrates and they're happening around the same time," she said, adding that many people have asked her about a possible connection.

Both diseases underscore the importance of basic scientific research, she said.

"Here are two examples where you need all this information, but until now, no one saw any apparent benefit to doing the research," she said. "It's especially relevant with parasites because we have hundreds of examples where they are vectors of diseases, but we have no idea with what frequency parasites occur on bats, potentially carrying pathogens from bat to bat. We need to do basic research and should always remember that many great discoveries were made purely by serendipity."

Dittmar is currently funded by the National Science Foundation and she collaborates with the Field Museum in Chicago, where she is a research associate in zoology. She conducts field research on bat flies and bat fleas all over the world, throughout North and South America, Europe and Asia.

To learn more about her research, go to http://www.buffalo.edu/reporter/vol39/vol39n13/articles/DittmarFeature.html, or visit her Web site at http://web.mac.com/mysid/DittmarLab/%3EHOME.html.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | newswise
Further information:
http://www.buffalo.edu

Further reports about: Pathogen Syndrome parasites vectors

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>