Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Automated Microchip Reduces Genetic Screening Time

Genetic studies on small organisms such as worms and flies can now be done more quickly using a new microfluidic device developed by engineers at the Georgia Institute of Technology.

The new “lab-on-a-chip” can automatically position, image, determine the phenotype of and sort small animals, such as the worm Caenorhabditis elegans that is commonly used for biological studies.

“Classical genetic approaches require altering genetic information and monitoring changes in a large number of animals, which can be excruciatingly slow and often requires manual manipulations,” said Hang Lu, an assistant professor in Georgia Tech School of Chemical and Biomolecular Engineering. “As researchers move from studying single genes to analyzing interactions and networks, studies that require large sample sizes will be critical and this device allows for consistent and reliable operation to rapidly screen many animals.”

In the July print issue of the journal Nature Methods, available online June 22, Lu and graduate students Kwanghun Chung and Matthew Crane describe their automated microsystem and initial experimental results. The results show that they can sort small organisms without human intervention based on cellular and subcellular features, or traits, with a high degree of accuracy at a rate of several hundred animals per hour. This work was funded by the National Science Foundation and the National Institutes of Health.

... more about:
»Microsystem »organism

Using the microfluidic system is simple. Each small animal is automatically loaded into the microchip. The setup automatically arranges each organism in an identical position in the chip to reduce the processing time and increase throughput.

Once the organism is loaded, it is briefly immobilized by an integrated local temperature control system that cools the animal to approximate four degrees Celsius. Cooling effectively stops the animal’s motion and allows repeated imaging of the same organisms because unlike commonly-used anesthetic drugs, the cooling doesn’t have long-term effects.

After cooling, the system uses a high-resolution microscope to acquire multi-dimensional images of the animal on-chip.

“The advantage of using our microchip is that it’s completely compatible with any standard microscope you’d find in a biology laboratory – epifluorescence, stereo, multi-photon or confocal – with no modification required,” explained Lu.

The researchers have shown that the intensity and patterns of fluorescent markers imaged inside cooled animals versus those in anesthetized animals exhibit no discernible differences. Based on each animal’s phenotype, or how each animal looks under the microscope, the computer identifies whether it is wild-type or mutant and sorts it into the appropriate group.

Initial tests to assess the system were conducted on C. elegans, one of the tiniest multi-cellular organisms that share many fundamental cellular/molecular mechanisms with more advanced organisms. However, the automated system can also be adapted to study other small organisms such as fruit flies and fish embryos.

For one experiment, Lu and her team tested the ability of the system to analyze the gene expression pattern – the intensity, location and timing of appearance of a fluorescent protein – in a population of organisms. They were able to sort the free-moving animals into two categories, those fluorescing in a particle neuron and those that are not, at a speed of approximately 900 animals per hour. More than 90 percent of the animals were loaded into the observation chamber within 0.3 seconds after the previous animal exited.

In another experiment, the researchers were successful in separating a small number of mutant animals from a large population of wild-type animals based on the fluorescence in a single pair of neurons. With on-line processing and decision-making without human supervision, the system achieved a sorting speed of approximately 150 animals per hour and a false negative rate of less than 0.2 percent, indicating that almost all the mutants were captured by the system.

A third experiment was aimed at demonstrating the ability of the system to screen organisms based on micro-sized synaptic features of the animals. Results showed that the system was able to sort mixed populations at a rate of approximately 400 animals per hour for this application. In all three experiments, it would have taken researchers much longer to identify the worms manually with high-resolution microscopy a few worms at a time.

“This is the first automated device to combine high-resolution imaging with automated sorting of the worms.” added Lu. “Now that we have the automated system, we are able to perform genetic screens a lot faster than what has traditionally been done and speed up the discovery of new genes, new functions and new pathways.”

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

Abby Vogel | newswise
Further information:

Further reports about: Microsystem organism

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>