Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paradigm for cell-specific gene delivery

24.06.2008
Researchers from Northwestern University and Texas A & M University have discovered a new way to limit gene transfer and expression to specific tissues in animals.

In studies to determine how plasmids enter the nuclei of non-dividing cells, the group previously identified a region of a smooth muscle cell-specific promoter that was able to mediate nuclear targeting of any plasmid carrying this sequence uniquely in cultured smooth muscle cells but in no other cell type.

In their current study to appear in the July 08 issue of Experimental Biology and Medicine, the team, led by Drs. David Dean and Jennifer Young from the Department of Medicine at Northwestern University, in collaboration with Warren Zimmer from Texas A & M University, now demonstrate that such restriction of nuclear entry using this specific DNA sequence can be used in blood vessels of living animals to direct gene transfer and expression specifically to smooth muscle cells.

They have also developed a novel gene delivery approach for the vasculature that uses an electric field to transiently permeabilize the plasma membrane of cells to allow entry of DNA. Thus, this work establishes the control of nuclear entry of gene therapy vectors as a novel approach to target genes and gene expression to desired cell types in the body.

... more about:
»Cell »DNA »Nuclear »cell-specific »vector

Vascular smooth muscle proliferative diseases, including atherosclerosis and restenosis, are among the leading causes of morbidity and mortality in the US. Gene therapy may represent an important alternative for the treatment and prevention of these proliferative diseases of the vasculature. It can be highly cell-specific, mimic or restore normal in vivo function, and can be permanent or transient depending on vector design. Currently, a number of gene delivery systems for use on the arterial wall are being studied, but as yet their low efficiency in gene transfer and lack of cell-specific targeting and expression are major limitations. According to Dr. David Dean, "The benefit of our newly described approach is that it can target specific cell types.

One of the most commonly envisioned treatments for these proliferative disorders is to deliver genes that kill or inhibit the dividing smooth muscle cells, but we need to target only these muscle cells and not any other cell in the vessel wall and this approach will enable us to do just that". The goal of the team is to design more effective gene therapy vectors for use in the vasculature by understanding the molecular mechanisms by which DNA and DNA-protein complexes are actively transported into the nucleus. Dr. Warren Zimmer states "these results set the stage for our future use of this technology to deliver therapeutic genes to lessen the severity of restenosis which is the most common issue following angioplasty and placement of stents".

Dr. Dean continues, "Now that we have demonstrated proof of principle for this approach we can look for DNA sequences that act in other tissues and develop cell-specific treatments for any number of organs". Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, stated "The exciting studies reported here are the first to demonstrate that non-viral gene delivery can be made cell-specific by controlling the nuclear entry of plasmid DNA, and as such, establishes a new paradigm for cell-selective gene delivery. Drs. Dean, Young, and Zimmer are to be congratulated on this ground-breaking study".

Dr. David Dean | EurekAlert!
Further information:
http://www.urmc.rochester.edu
http://www.ebmonline.org
http://www.sebm.org

Further reports about: Cell DNA Nuclear cell-specific vector

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>