Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia drug could save lives of stroke patients

24.06.2008
Studies in mice reveal why tPA may cause brain damage

The drug tPA is the most effective treatment currently available for stroke patients, but its safety is limited to use within the first three hours following the onset of symptoms. After that, tPA may cause dangerous bleeding in the brain.

However, in a study published today in Nature Medicine, investigators from the Stockholm Branch of the Ludwig Institute for Cancer Research (LICR) and the University of Michigan Medical School show that these problems might be overcome if tPA is combined with the leukemia drug, imatinib (Gleevec®). The results demonstrate that imatinib greatly reduces the risk of tPA-associated bleeding in mice, even when tPA was given as late as five hours after the stroke had begun. The LICR team, in collaboration with the Karolinska University Hospital in Stockholm, is now planning a clinical trial with imatinib in stroke patients.

According to the World Health Organization (WHO), 80 percent of the 15 million strokes that occur each year are caused by the type of blood clots in the brain that tPA can dissolve. Today, less than 3% of patients with this type of stroke receive tPA because the narrow safety window has often passed by the time a stroke patient reaches a hospital and is diagnosed. If the planned clinical trial with stroke patients in Sweden confirms the findings of the present study, there is great promise that imatinib or similar drugs could be administered to stoke patients to increase the therapeutic window of tPA.

... more about:
»Imatinib »LICR »PDGF-CC »blood »tPA

The basis for this novel proposal is the key growth factor PDGF-CC, which has now been discovered to control the blood brain barrier (a structure that normally shields the brain from the blood). When tPA acts on PDGF-CC, the blood-brain barrier becomes porous and can start to leak. Imatinib inhibits the detrimental effect of PDGF-CC by binding to its receptor PDGFR alpha, seemingly without hindering tPA's therapeutic effect, which is to break down clots that have lodged in the brain's blood vessels.

"Ten years ago our research group identified the growth factor PDGF-CC, and we are now very excited having unraveled a mechanism in the brain involving this factor", says Professor Ulf Eriksson, who leads the LICR team. "This finding has indeed the potential to revolutionize the treatment of stroke."

This study was conducted by investigators from: Ludwig Institute for Cancer Research, Stockholm Branch, Sweden; University of Michigan Medical School, Ann Arbor, USA; Karolinska Institute, Stockholm, Sweden; University of Maryland, Baltimore, USA; and Emory University, Atlanta, USA. Funding was provided by the Ludwig Institute for Cancer Research, the National Institutes of Health, the Novo Nordisk Foundation, the Swedish Research Council, the Swedish Cancer Foundation, the LeDucq Foundation and the Inga-Britt and Arne Lundberg Foundation.

About LICR

The Ludwig Institute for Cancer Research (LICR) is the largest international non-profit institute dedicated to understanding and controlling cancer. With operations at 73 sites in 17 countries, LICR's research network quite literally spans the globe. LICR has developed an impressive portfolio of reagents, knowledge, expertise, and intellectual property, and has also assembled the personnel, facilities, and practices necessary to patent, clinically evaluate, license, and thus translate, the most promising aspects of its own laboratory research into cancer therapies.

Contact Sarah L. White, Ph.D. Director, Office of Communications 605 Third Avenue / 33rd Floor New York, NY 10158 USA Tel: +1 917 379 0398 Fax: +1 212 450 1500 E-mail: swhite@licr.org

Sarah White | EurekAlert!
Further information:
http://www.licr.org

Further reports about: Imatinib LICR PDGF-CC blood tPA

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>