Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia drug could save lives of stroke patients

24.06.2008
Studies in mice reveal why tPA may cause brain damage

The drug tPA is the most effective treatment currently available for stroke patients, but its safety is limited to use within the first three hours following the onset of symptoms. After that, tPA may cause dangerous bleeding in the brain.

However, in a study published today in Nature Medicine, investigators from the Stockholm Branch of the Ludwig Institute for Cancer Research (LICR) and the University of Michigan Medical School show that these problems might be overcome if tPA is combined with the leukemia drug, imatinib (Gleevec®). The results demonstrate that imatinib greatly reduces the risk of tPA-associated bleeding in mice, even when tPA was given as late as five hours after the stroke had begun. The LICR team, in collaboration with the Karolinska University Hospital in Stockholm, is now planning a clinical trial with imatinib in stroke patients.

According to the World Health Organization (WHO), 80 percent of the 15 million strokes that occur each year are caused by the type of blood clots in the brain that tPA can dissolve. Today, less than 3% of patients with this type of stroke receive tPA because the narrow safety window has often passed by the time a stroke patient reaches a hospital and is diagnosed. If the planned clinical trial with stroke patients in Sweden confirms the findings of the present study, there is great promise that imatinib or similar drugs could be administered to stoke patients to increase the therapeutic window of tPA.

... more about:
»Imatinib »LICR »PDGF-CC »blood »tPA

The basis for this novel proposal is the key growth factor PDGF-CC, which has now been discovered to control the blood brain barrier (a structure that normally shields the brain from the blood). When tPA acts on PDGF-CC, the blood-brain barrier becomes porous and can start to leak. Imatinib inhibits the detrimental effect of PDGF-CC by binding to its receptor PDGFR alpha, seemingly without hindering tPA's therapeutic effect, which is to break down clots that have lodged in the brain's blood vessels.

"Ten years ago our research group identified the growth factor PDGF-CC, and we are now very excited having unraveled a mechanism in the brain involving this factor", says Professor Ulf Eriksson, who leads the LICR team. "This finding has indeed the potential to revolutionize the treatment of stroke."

This study was conducted by investigators from: Ludwig Institute for Cancer Research, Stockholm Branch, Sweden; University of Michigan Medical School, Ann Arbor, USA; Karolinska Institute, Stockholm, Sweden; University of Maryland, Baltimore, USA; and Emory University, Atlanta, USA. Funding was provided by the Ludwig Institute for Cancer Research, the National Institutes of Health, the Novo Nordisk Foundation, the Swedish Research Council, the Swedish Cancer Foundation, the LeDucq Foundation and the Inga-Britt and Arne Lundberg Foundation.

About LICR

The Ludwig Institute for Cancer Research (LICR) is the largest international non-profit institute dedicated to understanding and controlling cancer. With operations at 73 sites in 17 countries, LICR's research network quite literally spans the globe. LICR has developed an impressive portfolio of reagents, knowledge, expertise, and intellectual property, and has also assembled the personnel, facilities, and practices necessary to patent, clinically evaluate, license, and thus translate, the most promising aspects of its own laboratory research into cancer therapies.

Contact Sarah L. White, Ph.D. Director, Office of Communications 605 Third Avenue / 33rd Floor New York, NY 10158 USA Tel: +1 917 379 0398 Fax: +1 212 450 1500 E-mail: swhite@licr.org

Sarah White | EurekAlert!
Further information:
http://www.licr.org

Further reports about: Imatinib LICR PDGF-CC blood tPA

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>