Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia drug could save lives of stroke patients

24.06.2008
Studies in mice reveal why tPA may cause brain damage

The drug tPA is the most effective treatment currently available for stroke patients, but its safety is limited to use within the first three hours following the onset of symptoms. After that, tPA may cause dangerous bleeding in the brain.

However, in a study published today in Nature Medicine, investigators from the Stockholm Branch of the Ludwig Institute for Cancer Research (LICR) and the University of Michigan Medical School show that these problems might be overcome if tPA is combined with the leukemia drug, imatinib (Gleevec®). The results demonstrate that imatinib greatly reduces the risk of tPA-associated bleeding in mice, even when tPA was given as late as five hours after the stroke had begun. The LICR team, in collaboration with the Karolinska University Hospital in Stockholm, is now planning a clinical trial with imatinib in stroke patients.

According to the World Health Organization (WHO), 80 percent of the 15 million strokes that occur each year are caused by the type of blood clots in the brain that tPA can dissolve. Today, less than 3% of patients with this type of stroke receive tPA because the narrow safety window has often passed by the time a stroke patient reaches a hospital and is diagnosed. If the planned clinical trial with stroke patients in Sweden confirms the findings of the present study, there is great promise that imatinib or similar drugs could be administered to stoke patients to increase the therapeutic window of tPA.

... more about:
»Imatinib »LICR »PDGF-CC »blood »tPA

The basis for this novel proposal is the key growth factor PDGF-CC, which has now been discovered to control the blood brain barrier (a structure that normally shields the brain from the blood). When tPA acts on PDGF-CC, the blood-brain barrier becomes porous and can start to leak. Imatinib inhibits the detrimental effect of PDGF-CC by binding to its receptor PDGFR alpha, seemingly without hindering tPA's therapeutic effect, which is to break down clots that have lodged in the brain's blood vessels.

"Ten years ago our research group identified the growth factor PDGF-CC, and we are now very excited having unraveled a mechanism in the brain involving this factor", says Professor Ulf Eriksson, who leads the LICR team. "This finding has indeed the potential to revolutionize the treatment of stroke."

This study was conducted by investigators from: Ludwig Institute for Cancer Research, Stockholm Branch, Sweden; University of Michigan Medical School, Ann Arbor, USA; Karolinska Institute, Stockholm, Sweden; University of Maryland, Baltimore, USA; and Emory University, Atlanta, USA. Funding was provided by the Ludwig Institute for Cancer Research, the National Institutes of Health, the Novo Nordisk Foundation, the Swedish Research Council, the Swedish Cancer Foundation, the LeDucq Foundation and the Inga-Britt and Arne Lundberg Foundation.

About LICR

The Ludwig Institute for Cancer Research (LICR) is the largest international non-profit institute dedicated to understanding and controlling cancer. With operations at 73 sites in 17 countries, LICR's research network quite literally spans the globe. LICR has developed an impressive portfolio of reagents, knowledge, expertise, and intellectual property, and has also assembled the personnel, facilities, and practices necessary to patent, clinically evaluate, license, and thus translate, the most promising aspects of its own laboratory research into cancer therapies.

Contact Sarah L. White, Ph.D. Director, Office of Communications 605 Third Avenue / 33rd Floor New York, NY 10158 USA Tel: +1 917 379 0398 Fax: +1 212 450 1500 E-mail: swhite@licr.org

Sarah White | EurekAlert!
Further information:
http://www.licr.org

Further reports about: Imatinib LICR PDGF-CC blood tPA

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>