Leukemia drug could save lives of stroke patients

The drug tPA is the most effective treatment currently available for stroke patients, but its safety is limited to use within the first three hours following the onset of symptoms. After that, tPA may cause dangerous bleeding in the brain.

However, in a study published today in Nature Medicine, investigators from the Stockholm Branch of the Ludwig Institute for Cancer Research (LICR) and the University of Michigan Medical School show that these problems might be overcome if tPA is combined with the leukemia drug, imatinib (Gleevec®). The results demonstrate that imatinib greatly reduces the risk of tPA-associated bleeding in mice, even when tPA was given as late as five hours after the stroke had begun. The LICR team, in collaboration with the Karolinska University Hospital in Stockholm, is now planning a clinical trial with imatinib in stroke patients.

According to the World Health Organization (WHO), 80 percent of the 15 million strokes that occur each year are caused by the type of blood clots in the brain that tPA can dissolve. Today, less than 3% of patients with this type of stroke receive tPA because the narrow safety window has often passed by the time a stroke patient reaches a hospital and is diagnosed. If the planned clinical trial with stroke patients in Sweden confirms the findings of the present study, there is great promise that imatinib or similar drugs could be administered to stoke patients to increase the therapeutic window of tPA.

The basis for this novel proposal is the key growth factor PDGF-CC, which has now been discovered to control the blood brain barrier (a structure that normally shields the brain from the blood). When tPA acts on PDGF-CC, the blood-brain barrier becomes porous and can start to leak. Imatinib inhibits the detrimental effect of PDGF-CC by binding to its receptor PDGFR alpha, seemingly without hindering tPA's therapeutic effect, which is to break down clots that have lodged in the brain's blood vessels.

“Ten years ago our research group identified the growth factor PDGF-CC, and we are now very excited having unraveled a mechanism in the brain involving this factor”, says Professor Ulf Eriksson, who leads the LICR team. “This finding has indeed the potential to revolutionize the treatment of stroke.”

This study was conducted by investigators from: Ludwig Institute for Cancer Research, Stockholm Branch, Sweden; University of Michigan Medical School, Ann Arbor, USA; Karolinska Institute, Stockholm, Sweden; University of Maryland, Baltimore, USA; and Emory University, Atlanta, USA. Funding was provided by the Ludwig Institute for Cancer Research, the National Institutes of Health, the Novo Nordisk Foundation, the Swedish Research Council, the Swedish Cancer Foundation, the LeDucq Foundation and the Inga-Britt and Arne Lundberg Foundation.

About LICR

The Ludwig Institute for Cancer Research (LICR) is the largest international non-profit institute dedicated to understanding and controlling cancer. With operations at 73 sites in 17 countries, LICR's research network quite literally spans the globe. LICR has developed an impressive portfolio of reagents, knowledge, expertise, and intellectual property, and has also assembled the personnel, facilities, and practices necessary to patent, clinically evaluate, license, and thus translate, the most promising aspects of its own laboratory research into cancer therapies.

Contact Sarah L. White, Ph.D. Director, Office of Communications 605 Third Avenue / 33rd Floor New York, NY 10158 USA Tel: +1 917 379 0398 Fax: +1 212 450 1500 E-mail: swhite@licr.org

Media Contact

Sarah White EurekAlert!

More Information:

http://www.licr.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors