Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug reverses mental retardation caused by genetic disorder

24.06.2008
UCLA mouse study offers hope for correcting how autism disrupts brain

UCLA researchers discovered that an FDA-approved drug reverses the brain dysfunction inflicted by a genetic disease called tuberous sclerosis complex (TSC). Because half of TSC patients also suffer from autism, the findings offer new hope for addressing learning disorders due to autism. Nature Medicine publishes the findings in its online June 22 edition.

Using a mouse model for TSC, the scientists tested rapamycin, a drug approved by the FDA to fight tissue rejection following organ transplants. Rapamycin is well-known for targeting an enzyme involved in making proteins needed for memory. The UCLA team chose it because the same enzyme is also regulated by TSC proteins.

"This is the first study to demonstrate that the drug rapamycin can repair learning deficits related to a genetic mutation that causes autism in humans. The same mutation in animals produces learning disorders, which we were able to eliminate in adult mice," explained principal investigator Dr. Alcino Silva, professor of neurobiology and psychiatry at the David Geffen School of Medicine at UCLA. "Our work and other recent studies suggest that some forms of mental retardation can be reversed, even in the adult brain."

... more about:
»Autism »Genetic »Mental »Rapamycin »TSC »UCLA »retardation

"These findings challenge the theory that abnormal brain development is to blame for mental impairment in tuberous sclerosis," added first author Dan Ehninger, postgraduate researcher in neurobiology. "Our research shows that the disease's learning problems are caused by reversible changes in brain function -- not by permanent damage to the developing brain."

TSC is a devastating genetic disorder that disrupts how the brain works, often causing severe mental retardation. Even in mild cases, learning disabilities and short-term memory problems are common. Half of all TSC patients also suffer from autism and epilepsy. The disorder strikes one in 6,000 people, making it twice as common as Huntington's or Lou Gehrig's disease.

Silva and Ehninger studied mice bred with TSC and verified that the animals suffered from the same severe learning difficulties as human patients. Next, the UCLA team traced the source of the learning problems to biochemical changes sparking abnormal function of the hippocampus, a brain structure that plays a key role in memory.

"Memory is as much about discarding trivial details as it is about storing useful information," said Silva, a member of the UCLA Department of Psychology and UCLA Brain Research Institute. "Our findings suggest that mice with the mutation cannot distinguish between important and unimportant data. We suspect that their brains are filled with meaningless noise that interferes with learning."

"After only three days of treatment, the TSC mice learned as quickly as the healthy mice," said Ehninger. "The rapamycin corrected the biochemistry, reversed the learning deficits and restored normal hippocampal function, allowing the mice's brains to store memories properly."

In January, Silva presented his study at the National Institute of Neurological Disorders and Stroke meeting, where he was approached by Dr. Petrus de Vries, who studies TSC patients and leads rapamycin clinical trials at the University of Cambridge. After discussing their respective findings, the two researchers began collaborating on a clinical trial currently taking place at Cambridge to examine whether rapamycin can restore short-term memory in TSC patients.

"The United States spends roughly $90 billion a year on remedial programs to address learning disorders," noted Silva. "Our research offers hope to patients affected by tuberous sclerosis and to their families. The new findings suggest that rapamycin could provide therapeutic value in treating similar symptoms in people affected by the disorder."'

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: Autism Genetic Mental Rapamycin TSC UCLA retardation

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>