Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA study unlocks mystery to diverse traits in dogs

24.06.2008
Discovery offers potential benefits for dogs and their owners

What makes a pointer point, a sheep dog herd, and a retriever retrieve? Why do Yorkshire terriers live longer than Great Danes? And how can a tiny Chihuahua possibly be related to a Great Dane?

Dogs vary in size, shape, color, coat length and behavior more than any other animal and until now, this variance has largely been unexplained. Now, scientists have developed a method to identify the genetic basis for this diversity that may have far-reaching benefits for dogs and their owners.

In the cover story of tomorrow's edition of the science journal Genetics, research reveals locations in a dog's DNA that contain genes that scientists believe contribute to differences in body and skull shape, weight, fur color and length – and possibly even behavior, trainability and longevity.

... more about:
»DNA »Mars »breed »canine »veterinarians

"This exciting breakthrough, made possible by working with leaders in canine genetics, is helping us piece together the canine genome puzzle which will ultimately translate into potential benefit for dogs and their owners," said study co-author Paul G. Jones, PhD, a Mars Veterinary™ genetics researcher at the Waltham® Centre for Pet Nutrition – part of Mars® Incorporated, a world leader in pet care that has been studying canine genetic science for the past eight years. "By applying this research approach, we may be able to decipher how genes contribute to physical or behavioral traits that affect many breeds."

Dogs originally derived from the wolf more than 15,000 years ago – a blink of the eye in evolutionary terms. Selective breeding produced dogs with physical and behavioral traits that were well suited to the needs or desires of their human owners, such as herding or hunting ability, coat color and body and skull shape and size. This resulted in the massive variance seen among the more than 350 distinct breeds that make up today's dog population. Until now, the genetic drivers of this diversity have intrigued scientists who have been trying to explain how and why the difference in physical and behavioral traits in dogs changed so rapidly from its wolf origins.

An international team of researchers, which included scientists at the National Human Genome Research Institute, the University of Utah, Sundowners Kennels in Gilroy, California and Mars' Waltham Center for Pet Nutrition in the United Kingdom, studied simple genetic markers known as Single Nucleotide Polymorphisms, or SNPs, to find places in the dog genome that correlate with breed traits. Because many traits are "stereotyped" – or fixed within breeds – researchers can zero in on these "hot spots" to see what specific genes are in the area that might contribute to differences in traits.

The research used 13,000 dog DNA samples provided by Mars Veterinary, which holds one of the most comprehensive canine DNA banks in the world. This collection has been built up with the help of pet owners who have consented to their pets providing cheek swabs and blood samples for the database. Mars' DNA bank allowed the study to cover most of the American Kennel Club recognized breeds that span a wide variety of physical and behavioral traits and differences in longevity.

"With further refinement and additional data, this method could be used to tailor products that may benefit the health of pets," Jones said. "Pet owners and veterinarians may be able to develop better care regimes based on this knowledge. In addition, genetic information about behavioral traits, such as trainability and temperament, could also help veterinarians identify the most lifestyle-appropriate pet for an owner."

This research may also have implications for human health, as dogs suffer from many of the same diseases that we do.

Mars is continuing its commitment to canine genetic science with ongoing investigations to better understand the makeup of a dog's DNA to help benefit the lives of dogs and their owners. The Wisdom Panel MX™ mixed breed analysis test is the first product to use the knowledge gained through this research. Learn more about the Wisdom Panel and this new study at www.wisdompanel.com.

About Mars Veterinary™

Mars Veterinary™ is the one of the newest divisions at MARS® Incorporated, a company known for innovative consumer and pet food brands that are trusted by people around the world.

Mars Veterinary™ is developing sophisticated genetic tests to allow pet owners, veterinarians and care providers to gain insight into the genetic make up of their individual dog. It is reaching new frontiers in canine genomic science, discovering important genetic markers that will help identify breed mixes. These major scientific advances can allow veterinarians and owners to care for dogs with unprecedented wisdom. Through research into pet genetics, Mars Veterinary™ is dedicated to revolutionizing personalized pet care strengthening the bond between people and their canine companions.

About Mars® Incorporated

MARS®, Incorporated, is a privately-held family owned company that produces some of the world's leading confectionery, food, petcare, beverage, and health & nutrition products, and operates in more than 65 countries. Mars, Incorporated employs more than 9,000 associates in the United States and 40,000 associates worldwide with research teams located around the world.

Kate Hartman | EurekAlert!
Further information:
http://www.webershandwick.com

Further reports about: DNA Mars breed canine veterinarians

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>