Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how measles virus spreads (in its host)

24.06.2008
Measles, one of the most common contagious diseases, has been thought to enter the body through the surface of airways and lungs, like many other major viruses. Now, Mayo Clinic researchers and their collaborators say that's not the case, and some medical texts will have to be revised. The findings are reported in today's online edition of The Journal of Clinical Investigation http://www.jci.org/.

"It has long been assumed that measles virus infects the airway epithelium before infecting immune cells," says Roberto Cattaneo, Ph.D., Mayo Clinic virologist and senior author of the study. "But we've shown that replication in the airways is not required, and that a virus replicating only in immune cells causes measles in monkeys."

The research team generated a measles virus that cannot enter the airway epithelium and showed that it spread in lymphocytes, cells of the immune system, and remained virulent. Researchers also showed, as they predicted in a new model of infection, that the virus could not cross the respiratory epithelium on its way out of the lungs and was not shed from infected monkeys.

Significance of the Research

... more about:
»airway »epithelium »measles

From a treatment standpoint, the findings help physician-researchers better understand how measles virus, which can be reprogrammed to eliminate cancer cells, spreads in its host. The research may help improve efficacy and safety of cancer therapy, and lead to a better understanding of how viruses similar to measles function. A result could be more effective vaccines for other diseases.

From a strictly scientific perspective, the study challenges a widely held assumption about this common contagion. In the introduction to their article, the researchers cite two recent medical texts on the measles virus that say it infects the upper respiratory epithelium before spreading to the rest of the body. In light of their findings, the investigators say those statements will have to be revised.

The team tested their hypothesis by developing a form of the measles virus that could not enter epithelia because it was made "blind" to the epithelial cell receptor, but could enter lymphatic cells through another receptor. The virus was tested on rhesus monkeys, inoculated via the nasal tract. They developed a rash and lost weight (both symptoms of measles in the species), but follow-up tests showed that the virus did not enter through the airway epithelium, though the lymph system was infected.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com
http://www.jci.org/

Further reports about: airway epithelium measles

More articles from Life Sciences:

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>