Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Awarded $5.6 Million NIH Grant to Develop Therapeutics Against Deadly Viruses

24.06.2008
Researchers at the Uniformed Services University of the Health Sciences (USU) have been awarded a $5.6 million grant from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), to develop and test vaccines and treatments for the Nipah and Hendra viruses.

Dr. Christopher C. Broder, USU professor of microbiology and immunology and director of the university’s interdisciplinary program in Emerging Infectious Diseases, is the principal investigator of the grant from NIAID. The grant was awarded to further develop the vaccines and therapeutics for Nipah and Hendra that his group has been working on for the past several years.

The award will support a continued collaboration with investigators Lin-Fa Wang, Ph.D. and Deborah Middleton M.V.Sc, Ph.D. of Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) Livestock Industries, Australian Animal Health Laboratory (AAHL) and Australian Biosecurity Cooperative Research Center (AB-CRC) in Geelong, Victoria, where there is a high-level biosafety and security facility for testing the vaccines and therapeutics against these deadly viruses in appropriate models.

Hendra virus and Nipah virus are recently emerged paramyxoviruses that are highly pathogenic and can cause lethal infections in several animals and in humans. Since their initial discovery in Australia and Malaysia, sporadic Hendra outbreaks have been reported from 1995 to 2007, while Nipah has caused at least 9 outbreaks between 1998 and 2008. The majority of these episodes have occurred on a regular basis in Bangladesh and India, with human case fatality rates approaching 75% along with evidence of human-to-human transmission. The most recent appearance of Nipah in 2008 claimed the lives of several children. Studies have demonstrated that the natural reservoirs for Hendra and Nipah viruses are bats, primarily several different species of large fruit bats commonly referred to as flying foxes.

... more about:
»Hendra »NIH »Nipah »Vaccine »therapeutic

The first steps in countering infections caused by these viruses were to develop a vaccine that was both safe and effective, and also to find antibodies that could neutralize them. In earlier work, also supported by NIAID through the Middle-Atlantic Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (MARCE), a subunit vaccine for Nipah and Hendra, composed of a piece of the virus known as the G glycoprotein, was developed by Dr. Katharine Bossart, a former graduate student of Broder’s laboratory. Recent experiments by Dr. Bossart and colleagues have shown the vaccine to be very effective in preventing Nipah virus disease.

Antibodies on the other hand are proteins that are found in blood or other bodily fluids of animals and humans that are used by the immune system to identify and neutralize foreign molecules, including bacteria and viruses.

The neutralization of an invading virus is the process by which an antibody can specifically bind and block its infection, and in other recent MARCE-supported studies carried out by Broder’s group in collaboration with Dimiter S. Dimitrov, Ph.D., of the National Cancer Institute’s, Center for Cancer Research in Frederick, Md., and Zhongyu Zhu, Ph.D., of Dimitrov's group, a very potent Nipah and Hendra virus neutralizing human monoclonal antibody (m102.4) was developed as a potential therapeutic that could be administered to people infected by these viruses.

“We now have the critical resources needed to evaluate the therapeutic potential of both vaccines and perhaps more importantly a potent human antibody against both Nipah virus and Hendra virus, that could help control outbreaks in geographical regions susceptible to these emerging viruses, and result in a real benefit to those people at risk of infection and disease caused by these deadly agents," said Broder. “Our success in obtaining these new critical funds is also evidence of the success of NIAID’s Regional Center of Excellence program,” Broder added.

This NIH award will also support and bring together the expertise to structurally characterize the interaction between the Nipah and Hendra virus and the receptor proteins on cells that serve the gateway for virus infection, led by Dimitar B. Nikolov, Ph.D., and Kai Xu of Nikolov’s team at the Structural Biology Program of the Memorial Sloan-Kettering Cancer Center, in New York. Information from these additional studies may lead to the discovery of new therapeutics targeting the virus-host cell infection process.

NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. It also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

Located on the grounds of Bethesda’s National Naval Medical Center and across from the National Institutes of Health, USU is the nation’s federal school of medicine and graduate school of nursing, and also offers several graduate programs in the biomedical sciences and public health. The university educates health care professionals dedicated to career service in the Department of Defense and the U.S. Public Health Service. Medical students are active-duty uniformed officers in the Army, Navy, Air Force and Public Health Service, who are being educated to deal with wartime casualties, natural disasters, emerging infectious diseases, and other public health emergencies. Of the university’s more than 4,000 physician alumni, the vast majority serve on active duty and are supporting operations in Iraq, Afghanistan, and elsewhere, offering their leadership and expertise.

Office of External Affairs | newswise
Further information:
http://www.usuhs.mil

Further reports about: Hendra NIH Nipah Vaccine therapeutic

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>