Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayfly-Mimicking Sensor Could be High Tech 'Canary in the Coal Mine'

24.06.2008
Security, health and safety sensors in coal mines, buildings or underground public transit areas where air or water does not readily flow may one day be improved by research on young mayflies at the University of Maryland.

Mechanical engineers Ken Kiger and Elias Balaras, of the A. James Clark School of Engineering, and entomologist Jeffrey Shultz, College of Chemical and Life Sciences, have identified a biological mechanism in the young mayflies that could enable sensors in stagnant environments to make air or water flow past them so they can detect harmful substances.

Young aquatic mayflies, or “nymphs,” enhance their respiration using gills, creating a flow of fresh water with the help of seven pairs of nearby gill plates that flap like a Venetian blind. The flow of fresh water is generated by the plate’s motion, directing water to the mayfly’s gills as efficiently as possible.

"By duplicating the action of the mayfly gill plates in a tiny robotic device, we hope to create a flow of air or water to sensors in stagnant environments, so they can operate more effectively," Kiger said.

... more about:
»inertia »mayfly
Robotic Gills
The researchers are exploring how the mayfly’s gill plates work, and how to make a robotic version, working on duplicating and measuring the gill plate movement in a virtual computer model.

They also are taking a closer look into something that scientists have known for a long time: at a sufficiently small size, an object is less affected by inertia than it is by the thickness (viscosity) of the water it is travelling through.

For example, consider a canoe in comparison to a mayfly. As it travels through the water, the canoe produces a current, which will continue to ripple through the water for some time after the canoe moves on. This is an effect of the water's inertia.

The opposite is true for the tiny mayfly nymph, which is so small that the thickness (viscosity) of the water stops such a current almost as soon as the gill plates stop. Once the mayfly grows to a certain size though, it is capable of creating an inertial effect, or ripples, of its own. Its gills respond accordingly, which is a trait the researchers hope to replicate in their sensors.

"Mayfly sizes are right at the point where issues of viscosity and inertia switch in importance," Kiger said. "Depending on whether the weight or the thickness of the water is influencing its movement, the mayfly switches the way it pumps water to its gills."

The current trend in sensor technology is to strive for smaller and more compact devices to enhance their portability and reduce power consumption. As a result of this trend, traditional technology sensors will run into the same difficulty as experienced by the mayfly as the sensors reach smaller and smaller sizes: eventually a transition will occur where inertial flow mechanisms will become ineffective.

Studying how the mayfly deals with this transition can give us insight into how to better develop equivalent engineered sensors. The next step will be to construct a tiny artificial micro-robot that can reproduce the switchable gill action of the mayfly nymph. Such a mechanism could be installed in sensors intended to detect unhealthy air in otherwise stagnant areas, such as in subway stations or mines.

If a miniature set of robotic mayfly gill plates can move air over a sensor, potentially harmful substances can be detected faster – and no canaries would be harmed in the process. This work is been supported by the National Science Foundation. Entomology graduate student Andrew Sensenig also contributed to this research.

Missy Corley | newswise
Further information:
http://www.umd.edu

Further reports about: inertia mayfly

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>