Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineers Create 3D Model to Help Biologists Combat Blue Tongue Virus

A large 3D model of the Blue Tongue virus has been created by WMG engineering researchers at the University of Warwick that will help biologists devise new ways to combat the virus and protect millions of livestock from infection.

The WMG University of Warwick researchers based their model on data provided by the Institute of Animal Health at Pirbright, and from Oxford University. The Warwick team used rapid prototyping technology, normally used to create highly accurate 3D copies of components for a range of manufacturing processes, to create an accurate 3D model virus that is 5,200,000 times the size of the real thing.

Dr Greg Gibbons, who leads the University of Warwick’s WMG’s rapid prototyping team, is working with Professor Peter Mertens, head of the Arbovirus Research Group at the Institute of Animal Health at Pirbright, and Robert Esnouf of Oxford.

Dr Gibbons said: “Research collaboration between engineers and biologists is rare although we have worked with Oxford and the IAH before. The physical model we’ve created is based on the same technology we use to quickly and cheaply create models of, for example, car parts; used by manufacturers to develop designs and test products before going into full-scale production.”

... more about:
»Blue »Tongue

The insect-borne virus is most commonly seen in the late summer and autumn and can devastate herds of sheep and cattle.

Professor Mertens said: “Blue Tongue represents the worst threat to agriculture this country has seen for 20 years. In its first year in Belgium it wiped out 100 sheep, but in its second year it wiped out 30,000. In Britain we have 34 million sheep – we could be looking at losing up to 20 per cent of that population.”

“I don’t know of any other way to create a scientifically accurate model of a virus. By using the computer models we’ve generated we can feed that information into the machines at WMG and create an absolutely perfect model of the real virus.”

“The model will help us to understand how the molecules and proteins interact with one another and this could help us to develop new anti-viral drugs. Having a physical model that you can pick up and peer at will make a huge difference.”

The Blue Tongue model will be on show at the Royal Society’s Summer Science Exhibition in London from 30 June to 3 July.

Peter Dunn | alfa
Further information:

Further reports about: Blue Tongue

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>