Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Confirm Benzene-like Electron Delocalization

23.06.2008
Researchers in the lab of University of Oregon chemist Shih-Yuan Liu have successfully synthesized and structurally characterized boron-nitrogen compounds that are isoelectronic and isostructural to the fundamentally important benzene molecule.

Given the appearance of benzene derivatives in biomedical research and materials science, the boron-nitrogen substituted analogues could potentially play a pivotal role in these areas.

In the Journal of the American Chemical Society, Liu's team reports that, by using a structural approach, benzene surrogates known as 1,2-dihydro-1,2-azaborines possess electron-delocalized structures consistent with aromaticity -- a core concept in chemistry. The paper already has drawn praise by other researchers in a story in this week's Chemical & Engineering News.

"The bottom line is that we have synthesized reference compounds designed to be non-aromatic, and through the comparisons of the aromatic molecule with the reference compounds, we were able to unambiguously say that this compound is really electron delocalized in a way consistent with aromaticity," Liu said. "With the results of other research in this field, our findings present a very strong case that 1,2-dihydro-1,2-azaborines are indeed aromatic."

... more about:
»Benzene »Liu

Liu is among molecule-making chemists who are interested in manipulating heterocycles -- ring-like structures that contain various elements in addition to carbon. Aromatic heterocycles play a big role in pharmaceuticals, Liu said, noting that eight of the top ten selling molecules on the market today contain aromatic compounds.

For biomedical purposes, Liu said, boron-containing molecules disguised with other components readily accepted by living tissues could conceivably be used as markers to track the location of the drug. Eventually, he said, targeted drug therapies might deliver very specific tumor-destroying action that leaves healthy cells untouched.

"Our objective is really to first develop the synthetic chemistry of these boron-nitrogen heterocycles, make it accessible to other chemists to study, and ultimately go into applied research to create opportunities in cancer therapies and materials sciences," Liu said. "I believe that we have made substantial progress for expanding the scope of accessible molecules such as this. The methods we have developed here at the University of Oregon are beginning to be quite useful."

Co-authors on the paper were lead author Eric R. Abbey, a doctoral student, and Lev N. Zakharov, director of the X-Ray Diffraction Lab in the UO's Center for Advanced Materials Characterization in Oregon (CAMCOR). The research was funded in part by the National Science Foundation.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Source: Shih-Yuan Liu, assistant professor of chemistry, College of Arts and Sciences, 541-346-5573; lsy@uoregon.edu

Links: Shih-Yuan Liu's faculty page: http://www.uoregon.edu/~chem/liu.html; CAMCOR Web site: http://materialscience.uoregon.edu/Outreach/CAMCOR/About.html; College of Arts and Sciences: http://cas.uoregon.edu/

Jim Barlow | newswise
Further information:
http://www.uoregon.edu/~chem/liu.html

Further reports about: Benzene Liu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>