Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic "Clutch" Puts Flagellum in Neutral

23.06.2008
A tiny but powerful engine that propels the bacterium Bacillus subtilis through liquids is disengaged from the corkscrew-like flagellum by a protein clutch, Indiana University Bloomington and Harvard University scientists have learned. Their report appears in this week's Science.

Scientists have long known what drives the flagellum to spin, but what causes the flagellum to stop spinning -- temporarily or permanently -- was unknown.

"We think it's pretty cool that evolving bacteria and human engineers arrived at a similar solution to the same problem," said IU Bloomington biologist Daniel Kearns, who led the project. "How do you temporarily stop a motor once it gets going?"

The action of the protein they discovered, EpsE, is very similar to that of a car clutch. In cars, the clutch controls whether a car's engine is connected to the parts that spin its wheels. With the engine and gears disengaged from each other, the car may continue to move, but only because of its prior momentum; the wheels are no longer powered.

... more about:
»Biofilm »EPSE »Kearns »flagellum »subtilis

EpsE is thought to "sit down," as Kearns describes it, on the flagellum's rotor, a donut-shaped structure at the base of the flagellum. EpsE's interaction with a rotor protein called FliG causes a shape change in the rotor that disengages it from the flagellum's proton-powered engine.

The discovery of EpsE and its function was accidental. Kearns and colleagues were actually interested in learning more about the genes that cause individual cells of B. subtilis to cease wandering in solitude and take up residence in a massively communal, stationary assemblage called a biofilm. The stability of biofilms can be jeopardized by hyperactive bacterial cells whose flagella continue to spin.

"We were trying to get at how the bacterium's ability to move and biofilm formation are balanced," Kearns said. "We were looking for the genes that affected whether the cells are mobile or stationary. Although B. subtilis is harmless, biofilms are often associated with infections by pathogenic bacteria. Understanding biofilm formation may eventually prove useful in combating bacterial infections."

Once the scientists learned EpsE was involved in repressing flagellar motion, they devised two possible explanations for how EpsE acts. The first was that EpsE acts like a brake by pushing a non-moving part against a moving part and locking up the works. The other possibility, they imagined, was that EpsE acts like a clutch, disengaging one moving part from another. In this latter scenario, the engine can no longer drive flagellar spinning because key moving parts are no longer in contact. In this case, the flagellum would still have freedom of motion, listless as it might be.

To determine which hypothesis was correct, the scientists decided it best to let the tail wag the dog. They attached the tail end of the flagellum to a glass slide and examined the movement of the entire cell in the presence and absence of EpsE. In the absence of EpsE, the entire cell rotated once every five seconds. In the presence of EpsE, the cells stopped but could rotate passively, pushed by disturbances in the environment (Brownian motion). If EpsE acted like a brake, the cells would not have rotated at all.

The researchers also learned that when the cell begins producing EpsE, it takes about 15 minutes before the flagellar machinery is disabled.

"This makes a lot of sense as far as the cell is concerned," Kearns said. "The flagellum is a giant, very expensive structure. Often when a cell no longer needs something, it might destroy it and recycle the parts. But here, because the flagellum is so big and complex, doing that is not very cost effective. We think the clutch prevents the flagellum from rotating when constrained by the sticky matrix of the biofilm."

The discovery may give nanotechnologists ideas about how to regulate tiny engines of their own creation. The flagellum is one of nature's smallest and most powerful motors -- ones like those produced by B. subtilis can rotate more than 200 times per second, driven by 1,400 piconewton-nanometers of torque. That's quite a bit of (miniature) horsepower for a machine whose width stretches only a few dozen nanometers.

IU Bloomington Biology Research Associate Kris Blair is the paper's lead author. IUB undergraduate student Jared Winkelman and Harvard University microbiologists Linda Turner and Howard Berg also contributed to the report. It was funded with a grant from the National Science Foundation (Kearns) and the National Institutes of Health (Berg).

To speak with Kearns, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu.

David Bricker | newswise
Further information:
http://www.indiana.edu

Further reports about: Biofilm EPSE Kearns flagellum subtilis

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>