Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pumice as a Time Witness

23.06.2008
A chemist of Vienna University of Technology demonstrates how chemical fingerprints of volcanic eruptions and numerous pumice lump finds from archaeological excavations illustrate relations between individual advanced civilisations in the Eastern Mediterranean. Thanks to his tests and to the provenancing of the respective pumice samples to partially far-reaching volcanic eruptions, it became possible to redefine a piece of cultural history from the second millenium B.C.

During the Bronze Age, between the years 3000 and 1000 B.C., the Mediterranean was already intensely populated. Each individual culture, whether it may be the Egyptian one, the Syrian one, or the Minoan culture from Santorini, has in most cases its own well-researched, chronological history.

However, the connection between these individual cultures and locations is often missing for the most part because more often than not, there is no correspondence or similar exchange that has taken place, has been preserved, or is comprehensible. It is so much more difficult to synchronize the individual cultures among themselves.

An international research program of the Austrian Science Fund (FWF) called "SCIEM2000" is now opening new perspectives in this field. A research team of the Atomic Institute of the Austrian Universities under the leadership of Professor Max Bichler is engaged in identifying volcanic rocks from archaeological excavations. Georg Steinhauser, Project Assistant and Chemist at the Department of Radiation Physical Analysis and Radiochemistry of the Atomic Institute says: "Pumice is a foamy volcanic rock. Today, we know the rock that is floating on water mainly as a cosmetic remedy for instance for sole callus."

... more about:
»Santorini »archaeological »pumice »volcano

Pumice was also often used in ancient times as an abrasive and is repeatedly found in archaeological excavations in the Mediterranean Sea. Since volcanoes are not found everywhere, however, intense commercial activities related to this product were unleashed. "In Egypt, pumice was found in ancient workshops. In some of the excavations, there was even rock that still presented the right abrasion traces. They were used to polish sculptures, constructions, bronze objects, and so forth. Chemical tests enable us to trace back from which volcanoes the samples came," explains Georg Steinhauser.

Pumice in particular, just like the fine-grained volcano ashes, has a specific chemical composition, a characteristic "cocktail" on trace elements. Based on this, the researchers can generate a chemical fingerprint and can compare it to the data base the way it is done in criminology. Hence, pumices out of the Mediterranean volcanic centres as well as from archaeologically relevant pumice finds are being analysed. If the fingerprint of the find matches that of a rock type in the data base, then the origin can be undoubtedly determined.

So there is the immediate assumption that the Egyptians have surely ordered pumice from Greece. The researchers were able to determine these commercial relations by means of the instrumental neutron-activation analysis (INAA) by which the pumice samples in the research reactor are being irradiated with neutrons and subsequently measured with a gamma spectrometer. This way, the chemical fingerprint is generated with 25 characteristic main and trace elements. "We were able to discover that pumice as a commodity (presumably seaborne) covered distances of up to 2,000 km in the Mediterranean Sea.

The eruption of the volcanic island Santorini, about 1,600 B.C., represents a particular time indicator. It was so powerful, that the entire Minoan culture was obliterated. When we find today this layer of ashes respectively pumice in various archaeological excavations, this offers immediately a time marker and enables us to synchronize different cultures. This also enables us to determine which rulers were in power in different locations at a certain time," states Steinhauser. When a pumice lump from Santorini is found in an excavation, we can at least say that the Santorini volcano must have already erupted, and the time of the eruption corresponds consequently to the maximum age of the excavation discovery place.

For futher inquiries, you may contact:
Project Assistant (FWF) Mag. Dr. Georg Steinhauser
Atomic Institute of the Austrian Universities
Vienna University of Technology
Stadionallee 2, 1020 Vienna
Telephone: +43/1/58801 - 14189
Fax: +43/1/58801 - 14199
E-mail: georg.steinhauser@ati.ac.at
Spokesperson:
Mag. Daniela Hallegger
TU Vienna - PR and Communication
Karlsplatz 13/E011, A-1040 Vienna
Telephone: +43-1-58801-41027
Fax: +43-1-58801-41093
E-mail: daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/index.php?id=7485

Further reports about: Santorini archaeological pumice volcano

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>