Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene-expression profiling of the effects of liver toxins

20.06.2008
Gene-expression data from liver tissue or whole blood can be used to classify histopathologic differences in the effects of hepatotoxins.

It is hoped that these findings, published in BioMed Central’s open access journal, Genome Biology, will lead to a more precise way of defining the potential hepatotoxicity of new compounds.

It is already known that toxins can be classified using transcriptomic data taken from the primary target tissue or organ. In this new work, researchers set out to see if expression data from blood could serve as a surrogate for a target organ.

A team from the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, and Cogenics, a division of Clinical Data, Inc., produced an extensive set of gene expression data combined with more traditional toxicological measurements, such as clinical chemistry and histopathology, after exposing rats to different known hepatotoxic compounds.

... more about:
»blood »liver »toxins

Rodents were treated with one of the eight hepatotoxicants being studied at varying doses designed to induce liver injury (either moderate, severe, or no measurable injury), or with a vehicle control. Data relating to histopathology, clinical chemistry, hematology and gene expression were collected from whole blood and from the liver at different timepoints following exposure.

The researchers confirmed that gene expression data from the target organ can be used to classify and differentiate toxins, and went on to show that classification is also possible using data from whole blood. One of the study’s co-authors, Edward K. Lobenhofer says: “These data illustrate the power of gene expression profiling to resolve differences in the physical manifestation of the injury evoked by different toxicants using samples derived from either target tissue or whole blood. Additionally, this study demonstrates the possibility of classifying differences in these types of injury using data generated from blood samples.”

The results emphasise the importance of ‘phenotypic anchoring’ – linking gene expression changes to traditional measures of toxicology. “Our results powerfully underscore the importance of anchoring gene expression data analysis through consistent phenotypic endpoints” says co-author Raymond W. Tennant, Head of the Cancer Biology Group at the NIEHS. “Through phenotypic anchoring we are able to facilitate the identification of genes useful in compound classification.”

The comprehensive dataset from the study has been made freely available through a publicly accessible website (http://cebs.niehs.nih.gov) and will be a valuable resource for the systems toxicology research community.

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com/

Further reports about: blood liver toxins

More articles from Life Sciences:

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>