Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stay Or Go? Researchers Discover One Controller of Cell Movement

A zebra’s stripes, a seashell’s spirals, a butterfly’s wings: these are all examples of patterns in nature. The formation of patterns is a puzzle for mathematicians and biologists alike. How does the delicate design of a butterfly’s wings come from a single fertilized egg? How does pattern emerge out of no pattern?

Using computer models and live cells, researchers at Johns Hopkins have discovered a specific pattern that can direct cell movement and may help us understand how metastatic cancer cells move. This study was published in the May 13 issue of Developmental Cell.

“Pattern formation is a classic problem in embryology,” says Denise Montell, Ph.D., a professor of biological chemistry at Hopkins. “At some point, cells in an embryo must separate into those that will become heart cells, liver cells, blood cells and so on. Although this has been studied for years, there is still a lot we don’t understand.”

As an example of pattern formation, the researchers studied the process of how about six cells in the fruit fly distinguish themselves from neighboring cells and move from one location in the ovary to another during egg development. “In order for this cell migration to happen, you have to have cells that go and cells that stay,” says Montell. “There must be a clear distinction — a separation between different types of cells, which on the surface look the same.”

... more about:
»Migration »Montell »apontic »slbo

Previous work identified a specific signal necessary for getting these fly egg cells to move; the problem is that this signal is “graded.” Like drops of ink spreading out on wet paper, this signal travels in between surrounding cells, gradually fading away as it moves outwards. But clear lines are required for pattern formation — there is no grey area between a zebra’s black and white stripes, between heart and liver cells and, in this case, between migrating cells and those that stay put.

How are graded signals converted to a clear move or stay signal? By examining flies containing mutations in different genes, the researchers discovered that one gene in particular, called apontic, is important for converting a graded signal. “When apontic is mutated, the distinction between migrating and nonmigrating cells is fuzzy,” says Michelle Starz-Gaiano, Ph.D., a postdoctoral fellow in biological chemistry. “In these mutants, we see a lot of cases where migrating cells do not properly detach from their neighbors but instead drag them along as they move away.” This showed that the graded signal alone was not sufficient to kick-start the proper number of cells, but instead needed help from apontic.

Once the team discovered that apontic is important for getting these cells to move, they set out to figure out how apontic works. Collaborating with mathematician Hans Meinhardt, Ph.D., a professor emeritus at the Max Planck Institute in Germany, they designed a computer model that could simulate how graded signals are converted to commands that tell cells to move or to stay.

By making certain assumptions about each gene and assigning functions to each protein, the team built a simple circuit that can predict a cell’s behavior using the graded signal, apontic, and another previously discovered protein called slbo (pronounced “slow-bo”). The computer model shows that in a cell, the graded signal turns on both apontic and slbo. But apontic and slbo work against and battle each other: when one gains a slight advantage, the other weakens, which in turn causes the first to gain an even bigger advantage. This continues until one dominates in each cell. If slbo wins, the cell moves but if apontic wins, the cell stays put; thus a clear separation between move or stay is achieved.

“Not only is this a new solution to the problem of how to create a pattern out of no pattern, but we have also discovered that apontic is a new regulator of cell migration,” says Montell.

Cell migration likely underlies the spreading of cancer cells beyond an original tumor to other areas of the body. Understanding and therefore being able to manipulate the cell migration pathway could potentially prevent the development of these new tumors. At this stage, Montell says, “it’s more about just understanding what the positive and negative regulators of cell migration are.”

The research was funded by the American Cancer Society and the National Institutes of Health.

Authors on the paper are Starz-Gaiano, Mariana Melani, Xiaobo Wang, and Montell, all of Hopkins; and Hans Meinhardt of the Max-Planck-Institut, Tübingen, Germany.

Erin Vasudevan | newswise
Further information:

Further reports about: Migration Montell apontic slbo

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>