Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Worm-like Marine Animal Providing Fresh Clues About Human Evolution

The marine invertebrate amphioxus offers baseline information for genetic roots of vertebrate innovation such as the adaptive immune system.

Research on the genome of a marine creature led by scientists at Scripps Institution of Oceanography at UC San Diego is shedding new light on a key area of the tree of life.

Linda Holland, a research biologist at Scripps Oceanography, and her colleagues from the United States, Europe and Asia, have deciphered and analyzed fundamental elements of the genetic makeup of a small, worm-like marine animal called amphioxus, also known as a lancelet.

Amphioxus is not widely known to the general public, but is gaining interest in scientific circles because of its position as one of the closest living invertebrate relatives of vertebrates. Although amphioxus split from vertebrates more than 520 million years ago, its genome holds tantalizing clues about evolution.

... more about:
»Evolution »Genome »amphioxus »immune »invertebrate »neural

The research led by Holland is published in the July issue of the journal Genome Research. A corresponding research paper is published in the June 19 issue of Nature.

Holland and her colleagues studied the genes of the amphioxus species Branchiostoma floridae through samples obtained in recent years during field work off Tampa, Fla.

Because amphioxus is evolving slowly—its body plan remains similar to that of fossils from the Cambrian time—the animal serves as an intriguing comparison point for tracing how vertebrates have evolved and adapted. This includes new information about how vertebrates have employed old genes for new functions.

“We are finding that today’s complicated vertebrate has not invented a lot of new genes to become complicated,” said Holland, of the Marine Biology Research Division at Scripps Oceanography. “Amphioxus shows us that vertebrates have taken old genes and recombined them, changed their regulation and perhaps changed the gene function.”

Originally discovered in the 1700s, amphioxus appears fish-like with a small tail fin and medial fins, but no paired ones. They spend most of their time burrowed in sand, with their snouts extended for filter feeding.

The human genome has only about 25 percent more genes than the amphioxus genome, according to Holland. During evolution, humans have duplicated genes for different functions. Such duplication has given humans and other vertebrates a much larger “toolkit” for making various structures that are absent in amphioxus, including cells for pigment and collagen type II-based cartilage, for example.

In the new research, Holland and her colleagues describe success in probing the roots of important functions such as immunity. While vertebrates have two types of immune systems—innate, which is a general first line of defense against pathogens, and adaptive, involving antibodies specific for particular pathogens—invertebrates like amphioxus have only innate immune systems. In amphioxus, several of these innate immune genes have been independently duplicated many times over. It may be that with a second line of defense, vertebrates, compared with invertebrates like amphioxus, are less reliant on innate immunity to ward off infection.

The neural crest cells of vertebrates are an excellent example of how “old” genes have acquired new functions. In all vertebrates, neural crest cells migrate from the developing neural tube throughout the body, giving rise to such structures as pigment cells, cartilage of the head and a number of other cell types. Although amphioxus has a brain and spinal cord and makes them using the same genes in the same way as vertebrates, amphioxus has no neural crest cells. Even so, amphioxus has all of the genes necessary for generating migratory neural crest cells; vertebrates have just put them together in new ways. It can be compared with a chef who takes basic leftovers in a refrigerator and whips up a fine gourmet dish.

“The take-home message from this sequencing is that the human and amphioxus genomes are very much alike,” said Holland.

A collaborative effort of some 30 laboratories around the world solved the sequence of the amphioxus genome.

Further, deeper analyses between the amphioxus and human genomes in the years ahead will provide even more important clues about genetic evolution.

“All of this is just the tip of the iceberg,” said Holland. “It will take a number of years for people to look in greater depth at the amphioxus and human genomes. In terms of figuring out what evolution has done and how it generally works, the amphioxus genome has really been a goldmine and will continue to be one in the years ahead.”

In addition to Holland, coauthors of the Genome Research paper include:

Ricard Albalat, Kaoru Azumi, Èlia Benito-Gutiérrez, Matthew J. Blow, Marianne Bronner-Fraser, Frederic Brunet, Thomas Butts, Simona Candiani, Pieter J. de Jong, Larry J. Dishaw, David E. K. Ferrier, Jordi Garcia-Fernàndez, Jeremy J. Gibson-Brown, Carmela Gissi, Adam Godzik, Finn Hallböök, Dan Hirose, Kazuyoshi Hosomichi, Tetsuro Ikuta, Hidetoshi Inoko, Masanori Kasahara, Jun Kasamatsu, Takeshi Kawashima, Ayuko Kimura, Masaaki Kobayashi, Zbynek Kozmik, Kaoru Kubokawa, Vincent Laudet, Gary W. Litman, Alice C. McHardy, Daniel Meulemans, Masaru Nonaka, Robert P. Olinski, Kazutoyo Osoegawa, Zeev Pancer, Len A. Pennacchio, Mario Pestarino, Jonathan P. Rast, Isidore Rigoutsos, Marc Robinson-Rechavi, Graeme Roch, Hidetoshi Saiga, Yasunori Sasakura, Masanobu Satake, Yutaka Satou, Michael Schubert, Nancy Sherwood, Takashi Shiina, Naohito Takatori, Javier Tello, Pavel Vopalensky, Shuichi Wada, Anlong Xu, Yuzhen Ye, Keita Yoshida, Fumiko Yoshizaki, Jr-Kai Yu, Qing Zhang, Christian M. Zmasek, Nicholas H. Putnam, Daniel S. Rokhsar, Noriyuki Satoh and Peter W. H. Holland.

Additional participants in the amphioxus genome project included Pieter de Jong and Kazutoyo Osoegawa of Children's Hospital Oakland (CHORI).

The research was funded by grants from the National Science Foundation (USA), National Institutes of Health (USA), the Wellcome Trust (UK), BBSRC (UK), MEXT (Japan), Center for Applied Genomics MSMT and Academy of Sciences (Czech Republic), and the 21th Century and Global COEs at Kyoto University (Japan), Ministerio de Educación y Ciencia (Spain), MIUR (Italy), FIRB 2001 BAU01WAFY, and from MENRT, CNRS and CRESCENDO, a European Union Integrated Project of FP6.

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | newswise
Further information:

Further reports about: Evolution Genome amphioxus immune invertebrate neural

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>