Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient’s Own Infection-fighting T Cells Put Late-stage Melanoma Into Long-term Remission

20.06.2008
Researchers describe the first successful use of a human patient’s cloned infection-fighting T cells as the sole therapy to put an advanced solid-tumor cancer into long-term remission. A team led by Cassian Yee, M.D., an associate member of the Clinical Research Division at Fred Hutchinson Cancer Research Center, reports these findings in the June 19 issue of the New England Journal of Medicine.

Yee and colleagues removed CD4+ T cells, a type of white blood cell, from a 52-year-old man whose Stage 4 melanoma had spread to a groin lymph node and to a lung. T cells specific to targeting the melanoma were then expanded vastly in the laboratory using modifications to existing methods.

The lab-grown cells were then infused into the patient with no additional pre- or post-conditioning therapies, such as growth-factor or cytokine treatment. Two months later, PET and CT scans revealed no tumors. The patient remained disease free two years later, when he was last checked.

”We were surprised by the anti-tumor effect of these CD4 T cells and its duration of response,” Yee said. “For this patient we were successful, but we would need to confirm the effectiveness of therapy in a larger study.”

... more about:
»Antigen »CD4+ »T cells »Yee »melanoma

Yee cautioned that these results, presented in the journal’s “Brief Report” section, represent only one patient with a specific type of immune system whose tumor cells expressed a specific antigen. More studies are needed to confirm the effectiveness of the experimental T-cell therapy. If proven successful in more patients, Yee predicted this therapy could be used for the 25 percent of all late-stage melanoma patients who have the same immune-system type and tumor antigen.

Using a patient’s own immune system to combat cancer, called immunotherapy, is a growing area of research that aims to develop less-toxic cancer treatments than standard chemotherapy and radiation.

The patient in the journal report was one of nine patients with metastatic melanoma who were being treated in a recently completed clinical trial to test dose- escalation of autologous CD4+ T cells. Earlier studies performed by Yee used CD8+ T cells, which do not persist in the body without the support of CD4+ T cells or growth factors such as interleukin 2. Yee and colleagues theorized that infusion of a massive dose of CD4+ T cells would persist longer in the body because they make their own growth factor, interleukin 2, while stimulating the anti-tumor effect of the patient’s existing CD8+ T cells. However, until recently there was no feasible way to isolate and expand anti-tumor CD4+ T cells in the lab.

The researchers were successful in all of these areas. The patient received a dose of 5 billion cloned CD4+ T cells with specificity for the melanoma-associated NY-ESO-1 antigen. The cells persisted for at least 80 days in the patient’s body. And, even though only 50 percent to 75 percent of the patient’s tumor cells expressed the NY-ESO-1 antigen, the entire tumor regressed following the infusion. The scientists postulated that the patient’s immune response was broadened to other antigens expressed by the tumor cells. Follow-up tests showed T-cell responses to two additional tumor antigens, MAGE-3 and MART-1.

Researchers in Yee’s lab, the University of Washington School of Medicine and the Ludwig Institute for Cancer Research in New York collaborated on the research. The Burroughs-Wellcome Foundation, Damon Runyon Cancer Research Foundation, Edson Foundation and National Cancer Institute funded the study.

Note for media only: To arrange an interview with Yee or to obtain a copy of the paper, “Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1,” please contact Dean Forbes, Hutchinson Center Media Relations, at 206-667-2896 or dforbes@fhcrc.org.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.

Dean Forbes | newswise
Further information:
http://fhcrc.org

Further reports about: Antigen CD4+ T cells Yee melanoma

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>