Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient’s Own Infection-fighting T Cells Put Late-stage Melanoma Into Long-term Remission

20.06.2008
Researchers describe the first successful use of a human patient’s cloned infection-fighting T cells as the sole therapy to put an advanced solid-tumor cancer into long-term remission. A team led by Cassian Yee, M.D., an associate member of the Clinical Research Division at Fred Hutchinson Cancer Research Center, reports these findings in the June 19 issue of the New England Journal of Medicine.

Yee and colleagues removed CD4+ T cells, a type of white blood cell, from a 52-year-old man whose Stage 4 melanoma had spread to a groin lymph node and to a lung. T cells specific to targeting the melanoma were then expanded vastly in the laboratory using modifications to existing methods.

The lab-grown cells were then infused into the patient with no additional pre- or post-conditioning therapies, such as growth-factor or cytokine treatment. Two months later, PET and CT scans revealed no tumors. The patient remained disease free two years later, when he was last checked.

”We were surprised by the anti-tumor effect of these CD4 T cells and its duration of response,” Yee said. “For this patient we were successful, but we would need to confirm the effectiveness of therapy in a larger study.”

... more about:
»Antigen »CD4+ »T cells »Yee »melanoma

Yee cautioned that these results, presented in the journal’s “Brief Report” section, represent only one patient with a specific type of immune system whose tumor cells expressed a specific antigen. More studies are needed to confirm the effectiveness of the experimental T-cell therapy. If proven successful in more patients, Yee predicted this therapy could be used for the 25 percent of all late-stage melanoma patients who have the same immune-system type and tumor antigen.

Using a patient’s own immune system to combat cancer, called immunotherapy, is a growing area of research that aims to develop less-toxic cancer treatments than standard chemotherapy and radiation.

The patient in the journal report was one of nine patients with metastatic melanoma who were being treated in a recently completed clinical trial to test dose- escalation of autologous CD4+ T cells. Earlier studies performed by Yee used CD8+ T cells, which do not persist in the body without the support of CD4+ T cells or growth factors such as interleukin 2. Yee and colleagues theorized that infusion of a massive dose of CD4+ T cells would persist longer in the body because they make their own growth factor, interleukin 2, while stimulating the anti-tumor effect of the patient’s existing CD8+ T cells. However, until recently there was no feasible way to isolate and expand anti-tumor CD4+ T cells in the lab.

The researchers were successful in all of these areas. The patient received a dose of 5 billion cloned CD4+ T cells with specificity for the melanoma-associated NY-ESO-1 antigen. The cells persisted for at least 80 days in the patient’s body. And, even though only 50 percent to 75 percent of the patient’s tumor cells expressed the NY-ESO-1 antigen, the entire tumor regressed following the infusion. The scientists postulated that the patient’s immune response was broadened to other antigens expressed by the tumor cells. Follow-up tests showed T-cell responses to two additional tumor antigens, MAGE-3 and MART-1.

Researchers in Yee’s lab, the University of Washington School of Medicine and the Ludwig Institute for Cancer Research in New York collaborated on the research. The Burroughs-Wellcome Foundation, Damon Runyon Cancer Research Foundation, Edson Foundation and National Cancer Institute funded the study.

Note for media only: To arrange an interview with Yee or to obtain a copy of the paper, “Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1,” please contact Dean Forbes, Hutchinson Center Media Relations, at 206-667-2896 or dforbes@fhcrc.org.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.

Dean Forbes | newswise
Further information:
http://fhcrc.org

Further reports about: Antigen CD4+ T cells Yee melanoma

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>