Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient’s Own Infection-fighting T Cells Put Late-stage Melanoma Into Long-term Remission

20.06.2008
Researchers describe the first successful use of a human patient’s cloned infection-fighting T cells as the sole therapy to put an advanced solid-tumor cancer into long-term remission. A team led by Cassian Yee, M.D., an associate member of the Clinical Research Division at Fred Hutchinson Cancer Research Center, reports these findings in the June 19 issue of the New England Journal of Medicine.

Yee and colleagues removed CD4+ T cells, a type of white blood cell, from a 52-year-old man whose Stage 4 melanoma had spread to a groin lymph node and to a lung. T cells specific to targeting the melanoma were then expanded vastly in the laboratory using modifications to existing methods.

The lab-grown cells were then infused into the patient with no additional pre- or post-conditioning therapies, such as growth-factor or cytokine treatment. Two months later, PET and CT scans revealed no tumors. The patient remained disease free two years later, when he was last checked.

”We were surprised by the anti-tumor effect of these CD4 T cells and its duration of response,” Yee said. “For this patient we were successful, but we would need to confirm the effectiveness of therapy in a larger study.”

... more about:
»Antigen »CD4+ »T cells »Yee »melanoma

Yee cautioned that these results, presented in the journal’s “Brief Report” section, represent only one patient with a specific type of immune system whose tumor cells expressed a specific antigen. More studies are needed to confirm the effectiveness of the experimental T-cell therapy. If proven successful in more patients, Yee predicted this therapy could be used for the 25 percent of all late-stage melanoma patients who have the same immune-system type and tumor antigen.

Using a patient’s own immune system to combat cancer, called immunotherapy, is a growing area of research that aims to develop less-toxic cancer treatments than standard chemotherapy and radiation.

The patient in the journal report was one of nine patients with metastatic melanoma who were being treated in a recently completed clinical trial to test dose- escalation of autologous CD4+ T cells. Earlier studies performed by Yee used CD8+ T cells, which do not persist in the body without the support of CD4+ T cells or growth factors such as interleukin 2. Yee and colleagues theorized that infusion of a massive dose of CD4+ T cells would persist longer in the body because they make their own growth factor, interleukin 2, while stimulating the anti-tumor effect of the patient’s existing CD8+ T cells. However, until recently there was no feasible way to isolate and expand anti-tumor CD4+ T cells in the lab.

The researchers were successful in all of these areas. The patient received a dose of 5 billion cloned CD4+ T cells with specificity for the melanoma-associated NY-ESO-1 antigen. The cells persisted for at least 80 days in the patient’s body. And, even though only 50 percent to 75 percent of the patient’s tumor cells expressed the NY-ESO-1 antigen, the entire tumor regressed following the infusion. The scientists postulated that the patient’s immune response was broadened to other antigens expressed by the tumor cells. Follow-up tests showed T-cell responses to two additional tumor antigens, MAGE-3 and MART-1.

Researchers in Yee’s lab, the University of Washington School of Medicine and the Ludwig Institute for Cancer Research in New York collaborated on the research. The Burroughs-Wellcome Foundation, Damon Runyon Cancer Research Foundation, Edson Foundation and National Cancer Institute funded the study.

Note for media only: To arrange an interview with Yee or to obtain a copy of the paper, “Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1,” please contact Dean Forbes, Hutchinson Center Media Relations, at 206-667-2896 or dforbes@fhcrc.org.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.

Dean Forbes | newswise
Further information:
http://fhcrc.org

Further reports about: Antigen CD4+ T cells Yee melanoma

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>