Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patient’s Own Infection-fighting T Cells Put Late-stage Melanoma Into Long-term Remission

Researchers describe the first successful use of a human patient’s cloned infection-fighting T cells as the sole therapy to put an advanced solid-tumor cancer into long-term remission. A team led by Cassian Yee, M.D., an associate member of the Clinical Research Division at Fred Hutchinson Cancer Research Center, reports these findings in the June 19 issue of the New England Journal of Medicine.

Yee and colleagues removed CD4+ T cells, a type of white blood cell, from a 52-year-old man whose Stage 4 melanoma had spread to a groin lymph node and to a lung. T cells specific to targeting the melanoma were then expanded vastly in the laboratory using modifications to existing methods.

The lab-grown cells were then infused into the patient with no additional pre- or post-conditioning therapies, such as growth-factor or cytokine treatment. Two months later, PET and CT scans revealed no tumors. The patient remained disease free two years later, when he was last checked.

”We were surprised by the anti-tumor effect of these CD4 T cells and its duration of response,” Yee said. “For this patient we were successful, but we would need to confirm the effectiveness of therapy in a larger study.”

... more about:
»Antigen »CD4+ »T cells »Yee »melanoma

Yee cautioned that these results, presented in the journal’s “Brief Report” section, represent only one patient with a specific type of immune system whose tumor cells expressed a specific antigen. More studies are needed to confirm the effectiveness of the experimental T-cell therapy. If proven successful in more patients, Yee predicted this therapy could be used for the 25 percent of all late-stage melanoma patients who have the same immune-system type and tumor antigen.

Using a patient’s own immune system to combat cancer, called immunotherapy, is a growing area of research that aims to develop less-toxic cancer treatments than standard chemotherapy and radiation.

The patient in the journal report was one of nine patients with metastatic melanoma who were being treated in a recently completed clinical trial to test dose- escalation of autologous CD4+ T cells. Earlier studies performed by Yee used CD8+ T cells, which do not persist in the body without the support of CD4+ T cells or growth factors such as interleukin 2. Yee and colleagues theorized that infusion of a massive dose of CD4+ T cells would persist longer in the body because they make their own growth factor, interleukin 2, while stimulating the anti-tumor effect of the patient’s existing CD8+ T cells. However, until recently there was no feasible way to isolate and expand anti-tumor CD4+ T cells in the lab.

The researchers were successful in all of these areas. The patient received a dose of 5 billion cloned CD4+ T cells with specificity for the melanoma-associated NY-ESO-1 antigen. The cells persisted for at least 80 days in the patient’s body. And, even though only 50 percent to 75 percent of the patient’s tumor cells expressed the NY-ESO-1 antigen, the entire tumor regressed following the infusion. The scientists postulated that the patient’s immune response was broadened to other antigens expressed by the tumor cells. Follow-up tests showed T-cell responses to two additional tumor antigens, MAGE-3 and MART-1.

Researchers in Yee’s lab, the University of Washington School of Medicine and the Ludwig Institute for Cancer Research in New York collaborated on the research. The Burroughs-Wellcome Foundation, Damon Runyon Cancer Research Foundation, Edson Foundation and National Cancer Institute funded the study.

Note for media only: To arrange an interview with Yee or to obtain a copy of the paper, “Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1,” please contact Dean Forbes, Hutchinson Center Media Relations, at 206-667-2896 or

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world.

Dean Forbes | newswise
Further information:

Further reports about: Antigen CD4+ T cells Yee melanoma

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>