Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iodine Helps Kelp Fight Free Radicals and May Aid Humans, Too

19.06.2008
When human cells are attacked by free radicals, the antioxidant vitamins and minerals in the food we've eaten come to our defense.

However, when brown kelp (Laminaria), a kind of seaweed, is stressed, the plant flushes large quantities of iodide as a powerful antioxidant out of its cells, which combines with highly reactive oxygen in the water and air to produce molecular iodine, which commonly is used in hospital surgeries as an antiseptic. In fact, the process can generate clouds of iodine near the ocean surface that can ward off the damaging effects of ozone, thus affecting coastal climate.

The findings, made by an international team of scientists from the United Kingdom, Germany, United States, Switzerland, France and the Netherlands, reveal iodine's biological role as an inorganic antioxidant--the first to be described in a living system--and also point to the intriguing effects of iodine in scavenging free radicals in human blood cells.

The research, published last month in the Proceedings of the National Academy of Sciences, the scientific journal of the National Academy of Sciences in the U.S., was led by Frithjof Kupper from the Scottish Association for Marine Science. George Luther, the Maxwell P. and Mildred H. Harrington Professor of Oceanography at the University of Delaware, and UD alumnus Timothy Waite were part of the research team, conducting a series of chemical analyses for the study in Luther's lab at the UD College of Marine and Earth Studies in Lewes.

... more about:
»Brown »iodide »iodine »kelp

Brown kelp is a species of marine algae. It contains algin, a common emulsifying agent used in products ranging from pudding to paint, beer to make-up.

Now scientists have determined that brown kelp, which boasts the highest concentration of iodide of any plant or animal, passively takes in this element from seawater and then releases it when needed to detoxify harmful reactive oxygen species, which are generated by such external forces as pollution and intense light, as well as by internal metabolic processes.

“It's only one atom and it's charged. It's the simplest antioxidant you could possibly find,” Luther notes.

Although there are relatively small amounts of iodide in seawater compared to chloride and bromide, brown kelp has the ability to concentrate the element in its interstitial fluids, the liquids that bathe and surround the plant cells.

“Brown kelp has 1,000 times more iodine than what is in the sea, and it is always taking it on,” Luther says.

“When the kelp is exposed to stress, it dumps the iodide, which is easily converted into molecular iodine,” he explains. “Molecular iodine goes into the atmosphere, where it helps form clouds that decrease the heat from the sun. It's one way of getting rid of ozone close to the ocean surface,” Luther says.

At UD's Lewes campus, Luther and Waite measured the electrochemistry of iodide--the transfer of electrons between molecules--in brown kelp using a mercury-drop method Luther invented more than 20 years ago.

Iodine is an important element for thyroid function in humans. Since medieval times, these brown seaweeds have been used to treat goiter, an enlargement of the thyroid gland caused by a lack of iodine.

Additional studies by the research team suggest that iodine may play an important role in fending off human health threats presented by free radicals.

Currently, research is under way by scientists around the globe to assess iodine's impact on maladies ranging from thyroid disease to breast cancer, Luther says.

The scientists contributing to the study were from the Scottish Association for Marine Science, the University of York, and the University of Manchester, United Kingdom; Universitat Konstanz and the European Molecular Biology Laboratory, Germany; University of California, Santa Barbara, and University of Delaware, U.S.; Institut Thurgau and Paul Scherrer Institute, Switzerland; Université Pierre et Marie Curie, France; and Radboud University, The Netherlands.

Tracey Bryant | newswise
Further information:
http://www.udel.edu

Further reports about: Brown iodide iodine kelp

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>