Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iodine Helps Kelp Fight Free Radicals and May Aid Humans, Too

19.06.2008
When human cells are attacked by free radicals, the antioxidant vitamins and minerals in the food we've eaten come to our defense.

However, when brown kelp (Laminaria), a kind of seaweed, is stressed, the plant flushes large quantities of iodide as a powerful antioxidant out of its cells, which combines with highly reactive oxygen in the water and air to produce molecular iodine, which commonly is used in hospital surgeries as an antiseptic. In fact, the process can generate clouds of iodine near the ocean surface that can ward off the damaging effects of ozone, thus affecting coastal climate.

The findings, made by an international team of scientists from the United Kingdom, Germany, United States, Switzerland, France and the Netherlands, reveal iodine's biological role as an inorganic antioxidant--the first to be described in a living system--and also point to the intriguing effects of iodine in scavenging free radicals in human blood cells.

The research, published last month in the Proceedings of the National Academy of Sciences, the scientific journal of the National Academy of Sciences in the U.S., was led by Frithjof Kupper from the Scottish Association for Marine Science. George Luther, the Maxwell P. and Mildred H. Harrington Professor of Oceanography at the University of Delaware, and UD alumnus Timothy Waite were part of the research team, conducting a series of chemical analyses for the study in Luther's lab at the UD College of Marine and Earth Studies in Lewes.

... more about:
»Brown »iodide »iodine »kelp

Brown kelp is a species of marine algae. It contains algin, a common emulsifying agent used in products ranging from pudding to paint, beer to make-up.

Now scientists have determined that brown kelp, which boasts the highest concentration of iodide of any plant or animal, passively takes in this element from seawater and then releases it when needed to detoxify harmful reactive oxygen species, which are generated by such external forces as pollution and intense light, as well as by internal metabolic processes.

“It's only one atom and it's charged. It's the simplest antioxidant you could possibly find,” Luther notes.

Although there are relatively small amounts of iodide in seawater compared to chloride and bromide, brown kelp has the ability to concentrate the element in its interstitial fluids, the liquids that bathe and surround the plant cells.

“Brown kelp has 1,000 times more iodine than what is in the sea, and it is always taking it on,” Luther says.

“When the kelp is exposed to stress, it dumps the iodide, which is easily converted into molecular iodine,” he explains. “Molecular iodine goes into the atmosphere, where it helps form clouds that decrease the heat from the sun. It's one way of getting rid of ozone close to the ocean surface,” Luther says.

At UD's Lewes campus, Luther and Waite measured the electrochemistry of iodide--the transfer of electrons between molecules--in brown kelp using a mercury-drop method Luther invented more than 20 years ago.

Iodine is an important element for thyroid function in humans. Since medieval times, these brown seaweeds have been used to treat goiter, an enlargement of the thyroid gland caused by a lack of iodine.

Additional studies by the research team suggest that iodine may play an important role in fending off human health threats presented by free radicals.

Currently, research is under way by scientists around the globe to assess iodine's impact on maladies ranging from thyroid disease to breast cancer, Luther says.

The scientists contributing to the study were from the Scottish Association for Marine Science, the University of York, and the University of Manchester, United Kingdom; Universitat Konstanz and the European Molecular Biology Laboratory, Germany; University of California, Santa Barbara, and University of Delaware, U.S.; Institut Thurgau and Paul Scherrer Institute, Switzerland; Université Pierre et Marie Curie, France; and Radboud University, The Netherlands.

Tracey Bryant | newswise
Further information:
http://www.udel.edu

Further reports about: Brown iodide iodine kelp

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>