Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe-wide investment in lipid research will help tackle disease

18.06.2008
Leading scientists today called for Europe to invest more funds into the study of lipids – the 'fatty' molecules that play a crucial role in the function of human cells and which are implicated in a range of diseases from obesity and diabetes to Alzheimer's.

Common lipids such as cholesterol are known to play an important part in the normal functioning of cells and tissues, but human cells contain thousands of different lipids which are also vital for functions that include storing energy, maintaining the structure of the cell and sending biochemical signals. Scientists are discovering that if the biochemical pathways that regulate the metabolism and transport of these lipids become disturbed, this can result in disease.

A report* published today by the European Science Foundation (ESF) urges greater cooperation among researchers and more investment in the field of 'lipidomics' – the term given to the identification and analysis of the full complement of lipids in cells, tissues and body fluids, together with associated molecular structures such as enzymes and genes. The document is the output of a science policy activity led by the European Medical Research Councils (EMRC), the medical section within ESF.

The ESF science policy briefing document, drawn up by an international panel of experts led by Professor Gerrit van Meer of Utrecht University in The Netherlands and Professor Friedrich Spener of the University of Graz in Austria, says that the study of lipids has been largely neglected because until recently technology did not exist to analyse this complex class of molecules comprehensively. However, the application of an analytical technique called mass spectrometry now allows large numbers of lipids to be analysed rapidly. "This remarkable technological breakthrough will make it possible to better understand the cellular machineries that are responsible for producing and storing energy in cells, for the transport across and between cell membranes and for the signalling in and out of cells to name but a few examples," the report states.

... more about:
»Database »Disease »Lipid

A concerted research effort in lipidomics would help shed light on conditions ranging from obesity and heart disease to cancer and Alzheimer's, the report says, while pointing out that the number of European researchers with expertise in lipidomics is low and that increased funding is needed to help Europe to catch up with the level of research in countries such as Japan and the US.

The science policy briefing makes several key recommendations that would boost lipidomics research in Europe:

Investment in research programmes aimed at training biomedical scientists in lipid-related fields

Investment in further development of technologies for studying lipids, while establishing and maintaining strong links between technology developers and researchers

Development of a strong, coordinated and interdisciplinary research effort across Europe to understand lipid function and the roles of lipids in health and disease

Integration of European lipid databases and the facilitation of their communication with other databases worldwide. This would allow the 'holistic' interpretation of lipid data and provide a greater understanding of the role of lipids in health and disease.

Professor van Meer said, "Lipidomics not only involves the study of lipids, but it also involves enzymes, transporters, genes, proteins, and their biophysics. The challenge is to unite all these different datasets and bring them together with disease pathology in one concentrated database." Such an approach would provide invaluable new insights into diagnosing, monitoring and even curing disease, Professor van Meer added.

Professor Gerrit van Meer | EurekAlert!
Further information:
http://www.uu.nl

Further reports about: Database Disease Lipid

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>