Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers witness assembly of molecules critical to protein function

18.06.2008
A Virginia Tech research group lead by two biochemistry graduate students has isolated proteins responsible for the iron-sulfur cluster assembly process and witnessed the necessary protein interactions in vivo – within a cell. They have captured pathway intermediates and observed protein interactions between the two major players in iron-sulfur cluster assembly.

Iron-sulfur clusters are critical to life on earth. They are necessary for protein function in cellular processes, such as respiration in humans and other organisms and photosynthesis by plants. "But we do not understand how Fe-S molecules are made or the specifics of how they bond," said Callie Raulfs of Christiansburg, Va. "It does not happen spontaneously. It has to be regulated."

Diseases such as Friedrich's ataxia and several types of anemia are a result of iron-sulfur cluster (ISC) assembly malfunctions.

Using genetic and biochemical techniques, Ph.D. students Raulfs and Ina P. O'Carroll, of Tirana, Albania, have isolated components of the ISC machinery in the process of making iron-sulfur clusters. "This work provides insight into the sequential steps of the iron-sulfur cluster assembly process, helping to explain how molecules of iron and sulfur are synthesized and distributed in cells," said O'Carroll.

The work, "In vivo iron-sulfur cluster formation," by Raulfs, O'Carroll, Virginia Tech post-doctoral associates Patricia C. Dos Santos of Brazil and Mihaela-Carmen Unciuleac of Romania, and Dennis R. Dean of Blacksburg, professor of biochemistry and director of the Fralin Biotechnology Center at Virginia Tech, has been published in the Proceedings of the National Academy of Science (PNAS) Online Early Edition the week of June 16-20, 2008.

Previous studies by Dean and others have demonstrated that proteins can assemble clusters from components in vitro systems – that is, outside of an organism. Ten years ago, working with nitrogen-fixation systems, Dean's lab was the first to discover ISC proteins. Now Dean's students, Raulfs and O'Carroll, are the first to witness the assembly process in vivo – within a cell.

"The cool thing is we've come up with a way to observe ISC proteins from their native host with a cluster attached," said O'Carroll. "The system also allows us to capture different phases of the process."

The students have isolated three different intermediates of the ISC proteins involved in intercellular biosynthesis – or the cluster assembly process.

Rather than multiplying the proteins by placing them in E. coli, the Virginia Tech team used Azotobacter vinelandii, an aerobic, soil microbe that fixes nitrogen from the atmosphere, to obtain natural levels of the ISC proteins. "A vinelandii grows quickly and keeps the interior of the cell free of oxygen, which is important, since oxygen can destroy Fe-S clusters," said Raulfs, who first isolated a protein complex with a cluster attached, providing in vivo evidence that the two proteins get together and form a cluster.

"Because we are isolating proteins from the cell, we are also able to observe interactions between different Fe-S cluster asembly proteins," said O'Carroll. "We have been able to isolate a complex between the two major players in iron-sulfur assembly, the cluster assembly scaffold (IscU) and the sulfur-delivery protein (IscS)."

The methodology is to add a histidine amino acid tag to the ISC proteins "so we can fish the proteins out of the cell," said O'Carroll.

"Because we are fishing the cluster-containing protein out of the cell that has all of the other assembly proteins present at physiological levels, we are able to observe what else comes with the protein. What was really exciting in this case was that we saw large amounts of one of the other iron sulfur cluster assembly protein, IscS." said O'Carroll.

The work marks the first time researchers have been able to observe ISC proteins from the balanced environment of the native cell.

Next, they plan to determine the role of the individual genes in the set that produces ISC proteins in order to determine the effect of each gene on the assembly process. "The goal is to determine the events and the order in the ISC assembly process so we can figure out how cells make clusters and deliver them to specific target proteins," said O'Carroll.

The researchers are now developing a system that others can use to study proteins.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>