Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Montezuma gets his revenge

18.06.2008
Johns Hopkins researchers discover clue to how dysentery parasite might evade immune system

Every year, about 500 million people worldwide are infected with the parasite that causes dysentery, a global medical burden that among infectious diseases is second only to malaria. In a new study appearing in the June 15 issue of Genes and Development, Johns Hopkins researchers may have found a way to ease this burden by discovering a new enzyme that may help the dysentery-causing amoeba evade the immune system.

"This is the first enzyme to be identified that looks like it could mediate immune system evasion," says Sin Urban, Ph.D., an assistant professor of molecular biology and genetics at Hopkins.

The EhROM1 enzyme, it turns out, is part of an ancient group of enzymes—they are found in every branch of life from bacteria to man—known as rhomboid enzymes. In most animals, rhomboid enzymes seem to play a role in cell-to-cell communication, but a couple of years ago Urban found that malaria parasites use rhomboid enzymes for a more sinister purpose: to enter host cells uninvited.

... more about:
»EhROM1 »Malaria »amoeba »enzyme »immune system »parasite »rhomboid

That led his team to scour the DNA of other parasites to see if any of them also had genes that encode rhomboid enzymes. They found that the dysentery-causing amoeba Entamoeba histolytica contains one rhomboid enzyme and named it EhROM1.

"Plasmodia, the parasites that cause malaria, grab onto a host cell and push their way in," explains Urban. "Once inside they use rhomboid enzymes to cut themselves loose." But amoebas don't enter cells to cause dysentery, so Urban's team set out to figure out how these parasites use EhROM1.

They first identified protein targets cut by EhROM1 by looking for amoeba proteins that had structural signatures similar to those cut by malaria rhomboids. They found these signatures in a family of proteins—lectins—that are found on cell surfaces. The researchers put both proteins into cells and verified that EhROM1 does cut one particular lectin, and the more EhROM1 they added, the more lectin pieces resulted.

Every cell has on its surface proteins recognizable by sentries of the immune system that constantly survey the body for intruders, and amoebas are no different. To evade the immune system, amoebas shift all their surface proteins to the rear end of the cell then, like a dump truck, shed these proteins into the fluid around them.

Lectin, it turns out, is one of the proteins that during immune evasion moves to the rear and is shed by the amoeba. So collaborating researchers at Stanford University then looked to see if EhROM1 follows lectin and sure enough found that EhROM1 clusters at the cap—the cluster of surface proteins waiting to be shed.

"We're excited to see if EhROM1 plays a specific role in the cap shedding during immune evasion," says Urban.

What's more, the EhROM1 enzyme is remarkably similar to those found in malaria parasites, suggesting that any potential drugs targeting EhROM1 might be able to treat two of the world's most prevalent diseases.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.genesdev.org/
http://biolchem.bs.jhmi.edu/bcmb/faculty/Faculty_detail.asp?PersonID=1232

Further reports about: EhROM1 Malaria amoeba enzyme immune system parasite rhomboid

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>