Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Montezuma gets his revenge

18.06.2008
Johns Hopkins researchers discover clue to how dysentery parasite might evade immune system

Every year, about 500 million people worldwide are infected with the parasite that causes dysentery, a global medical burden that among infectious diseases is second only to malaria. In a new study appearing in the June 15 issue of Genes and Development, Johns Hopkins researchers may have found a way to ease this burden by discovering a new enzyme that may help the dysentery-causing amoeba evade the immune system.

"This is the first enzyme to be identified that looks like it could mediate immune system evasion," says Sin Urban, Ph.D., an assistant professor of molecular biology and genetics at Hopkins.

The EhROM1 enzyme, it turns out, is part of an ancient group of enzymes—they are found in every branch of life from bacteria to man—known as rhomboid enzymes. In most animals, rhomboid enzymes seem to play a role in cell-to-cell communication, but a couple of years ago Urban found that malaria parasites use rhomboid enzymes for a more sinister purpose: to enter host cells uninvited.

... more about:
»EhROM1 »Malaria »amoeba »enzyme »immune system »parasite »rhomboid

That led his team to scour the DNA of other parasites to see if any of them also had genes that encode rhomboid enzymes. They found that the dysentery-causing amoeba Entamoeba histolytica contains one rhomboid enzyme and named it EhROM1.

"Plasmodia, the parasites that cause malaria, grab onto a host cell and push their way in," explains Urban. "Once inside they use rhomboid enzymes to cut themselves loose." But amoebas don't enter cells to cause dysentery, so Urban's team set out to figure out how these parasites use EhROM1.

They first identified protein targets cut by EhROM1 by looking for amoeba proteins that had structural signatures similar to those cut by malaria rhomboids. They found these signatures in a family of proteins—lectins—that are found on cell surfaces. The researchers put both proteins into cells and verified that EhROM1 does cut one particular lectin, and the more EhROM1 they added, the more lectin pieces resulted.

Every cell has on its surface proteins recognizable by sentries of the immune system that constantly survey the body for intruders, and amoebas are no different. To evade the immune system, amoebas shift all their surface proteins to the rear end of the cell then, like a dump truck, shed these proteins into the fluid around them.

Lectin, it turns out, is one of the proteins that during immune evasion moves to the rear and is shed by the amoeba. So collaborating researchers at Stanford University then looked to see if EhROM1 follows lectin and sure enough found that EhROM1 clusters at the cap—the cluster of surface proteins waiting to be shed.

"We're excited to see if EhROM1 plays a specific role in the cap shedding during immune evasion," says Urban.

What's more, the EhROM1 enzyme is remarkably similar to those found in malaria parasites, suggesting that any potential drugs targeting EhROM1 might be able to treat two of the world's most prevalent diseases.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.genesdev.org/
http://biolchem.bs.jhmi.edu/bcmb/faculty/Faculty_detail.asp?PersonID=1232

Further reports about: EhROM1 Malaria amoeba enzyme immune system parasite rhomboid

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>