Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Montezuma gets his revenge

18.06.2008
Johns Hopkins researchers discover clue to how dysentery parasite might evade immune system

Every year, about 500 million people worldwide are infected with the parasite that causes dysentery, a global medical burden that among infectious diseases is second only to malaria. In a new study appearing in the June 15 issue of Genes and Development, Johns Hopkins researchers may have found a way to ease this burden by discovering a new enzyme that may help the dysentery-causing amoeba evade the immune system.

"This is the first enzyme to be identified that looks like it could mediate immune system evasion," says Sin Urban, Ph.D., an assistant professor of molecular biology and genetics at Hopkins.

The EhROM1 enzyme, it turns out, is part of an ancient group of enzymes—they are found in every branch of life from bacteria to man—known as rhomboid enzymes. In most animals, rhomboid enzymes seem to play a role in cell-to-cell communication, but a couple of years ago Urban found that malaria parasites use rhomboid enzymes for a more sinister purpose: to enter host cells uninvited.

... more about:
»EhROM1 »Malaria »amoeba »enzyme »immune system »parasite »rhomboid

That led his team to scour the DNA of other parasites to see if any of them also had genes that encode rhomboid enzymes. They found that the dysentery-causing amoeba Entamoeba histolytica contains one rhomboid enzyme and named it EhROM1.

"Plasmodia, the parasites that cause malaria, grab onto a host cell and push their way in," explains Urban. "Once inside they use rhomboid enzymes to cut themselves loose." But amoebas don't enter cells to cause dysentery, so Urban's team set out to figure out how these parasites use EhROM1.

They first identified protein targets cut by EhROM1 by looking for amoeba proteins that had structural signatures similar to those cut by malaria rhomboids. They found these signatures in a family of proteins—lectins—that are found on cell surfaces. The researchers put both proteins into cells and verified that EhROM1 does cut one particular lectin, and the more EhROM1 they added, the more lectin pieces resulted.

Every cell has on its surface proteins recognizable by sentries of the immune system that constantly survey the body for intruders, and amoebas are no different. To evade the immune system, amoebas shift all their surface proteins to the rear end of the cell then, like a dump truck, shed these proteins into the fluid around them.

Lectin, it turns out, is one of the proteins that during immune evasion moves to the rear and is shed by the amoeba. So collaborating researchers at Stanford University then looked to see if EhROM1 follows lectin and sure enough found that EhROM1 clusters at the cap—the cluster of surface proteins waiting to be shed.

"We're excited to see if EhROM1 plays a specific role in the cap shedding during immune evasion," says Urban.

What's more, the EhROM1 enzyme is remarkably similar to those found in malaria parasites, suggesting that any potential drugs targeting EhROM1 might be able to treat two of the world's most prevalent diseases.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.genesdev.org/
http://biolchem.bs.jhmi.edu/bcmb/faculty/Faculty_detail.asp?PersonID=1232

Further reports about: EhROM1 Malaria amoeba enzyme immune system parasite rhomboid

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>