Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins can reduce the toxic content in rice

18.06.2008
Researchers at the University of Gothenburg have found the proteins which govern how plants absorb arsenic. With this discovery, a variety of rice can be developed which does not absorb the toxin, even if it is irrigated with untreated water.

Arsenic is a very toxic and carcinogenic element which occurs naturally in rock. Arsenic contaminates water, soil and crops in a large number of countries. In some developing countries, high levels of arsenic in springs used for drinking water and irrigation have lead to alarmingly high amounts of toxin both in water and cultivated crops.

For example, in Bangladesh, parts of India and in some regions of Nepal, where rice is a staple food and people therefore risk consuming large amounts of the toxin via the food chain, arsenic is a very serious problem. According to calculations by UNESCO, more than 20 million people may be exposed to chronic arsenic exposure in these areas alone. But arsenic is a global problem where both developing and industrialised countries are affected.

Found the protein which governs arsenic absorption
Markus Tamas, a researcher at the Institute for Cell and Molecular Biology at the University of Gothenburg, together with Danish colleagues, has found the proteins responsible for arsenic absorption in plants. The discovery, which has been published in the scientific journal BMC Biology, opens up the possibility of reducing or preventing the absorption of arsenic by plants by using gene technology.
This could lead to varieties of rice being bred where the rice does not absorb arsenic even if it is irrigated with poisoned water.
"Using gene technology, we can either deactivate the proteins, or manipulate them so that the plants secrete the arsenic absorbed. By limiting the absorption and storage of arsenic in the rice, we should at least partly be able to reduce arsenic poisoning in humans by reducing how much of it comes from the food chain," says Markus Tamas, senior lecturer in Microbiology.
... more about:
»Protein »arsenic

Attempts to develop rice varieties which absorb less arsenic are underway already, but this discovery of the particular proteins involved may lead to these developments accelerating.

"But even though we are happy to have identified the proteins, our goal is still a long way off," says Markus Tamas.

Contact:
Markus Tamas, Senior Lecturer, Institute for Cell and Molecular Biology, University of Gothenburg
031-786 2548
073-373 2548
markus.tamas@cmb.gu.se

Krister Svahn | idw
Further information:
http://www.vr.se

Further reports about: Protein arsenic

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>