Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins can reduce the toxic content in rice

18.06.2008
Researchers at the University of Gothenburg have found the proteins which govern how plants absorb arsenic. With this discovery, a variety of rice can be developed which does not absorb the toxin, even if it is irrigated with untreated water.

Arsenic is a very toxic and carcinogenic element which occurs naturally in rock. Arsenic contaminates water, soil and crops in a large number of countries. In some developing countries, high levels of arsenic in springs used for drinking water and irrigation have lead to alarmingly high amounts of toxin both in water and cultivated crops.

For example, in Bangladesh, parts of India and in some regions of Nepal, where rice is a staple food and people therefore risk consuming large amounts of the toxin via the food chain, arsenic is a very serious problem. According to calculations by UNESCO, more than 20 million people may be exposed to chronic arsenic exposure in these areas alone. But arsenic is a global problem where both developing and industrialised countries are affected.

Found the protein which governs arsenic absorption
Markus Tamas, a researcher at the Institute for Cell and Molecular Biology at the University of Gothenburg, together with Danish colleagues, has found the proteins responsible for arsenic absorption in plants. The discovery, which has been published in the scientific journal BMC Biology, opens up the possibility of reducing or preventing the absorption of arsenic by plants by using gene technology.
This could lead to varieties of rice being bred where the rice does not absorb arsenic even if it is irrigated with poisoned water.
"Using gene technology, we can either deactivate the proteins, or manipulate them so that the plants secrete the arsenic absorbed. By limiting the absorption and storage of arsenic in the rice, we should at least partly be able to reduce arsenic poisoning in humans by reducing how much of it comes from the food chain," says Markus Tamas, senior lecturer in Microbiology.
... more about:
»Protein »arsenic

Attempts to develop rice varieties which absorb less arsenic are underway already, but this discovery of the particular proteins involved may lead to these developments accelerating.

"But even though we are happy to have identified the proteins, our goal is still a long way off," says Markus Tamas.

Contact:
Markus Tamas, Senior Lecturer, Institute for Cell and Molecular Biology, University of Gothenburg
031-786 2548
073-373 2548
markus.tamas@cmb.gu.se

Krister Svahn | idw
Further information:
http://www.vr.se

Further reports about: Protein arsenic

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>