Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Prions

17.06.2008
Magnetic resonance studies find clear differences between the structures of infectious and non-infectious prions

Infectious proteins known as prions have been identified as the cause of ¡°mad cow¡± disease (BSE). The culprits are ¡°incorrectly folded¡± proteins that can ¡°infect¡± healthy proteins. The molecular bases for such prion diseases are not yet fully understood.

Why are some proteins infectious while others are not? A team headed by Beat Meier (ETH Zurich, Switzerland) and Raimon Sabat¨¦ (University of Bordeaux, France) has examined two different forms of a prion-forming protein domain by means of NMR spectroscopy. In the journal Angewandte Chemie, the researchers report that the infectious and non-infectious forms differ markedly in their molecular structure.

The word prion is derived from the term Proteinaceous Infectious Particle. These are proteins that can fold in different ways. Pathogenic prions are dangerous because they can convert physiological, non-pathogenic molecules into the diseased form. Often, prions largely consist of ¦Â-sheet structures. These are accordion-like folded protein ribbons that can easily aggregate into thread-like structures (amyloid fibrils).

... more about:
»Infectious »Molecular »NMR »Prion »Protein »fibrils

The research team took on the prion-forming domain of the fungal protein HET-s. At a pH value of 7¡ªunder physiological conditions¡ªthis domain forms infectious fibrils. In acidic solution, at pH 3, it also forms fibrils, but these are not infectious.

By using nuclear magnetic resonance spectroscopy (NMR), the team was able to get a closer look at this protein. NMR allows for the evaluation of interactions of the nuclear spins of specific atomic nuclei with each other and their chemical surroundings, which gives information about the structure and dynamics of molecules and molecular fragments.

Here¡¯s what the researchers found: The spectra of the pH 7 and pH 3 versions of the prion differ significantly. Both are mainly arranged in the rigid ¦Â-sheet structure, but up close the structures diverge widely. Particularly striking is the fact that the infectious pH 7 form has highly flexible loops in addition to the rigid domains. These are absent from the non-infectious pH 3 prions.

¡°The lack of infectiousness of the pH 3 fibrils is thus related to the fact that their molecular structure is significantly different from that of the fibrils formed at physiological pH,¡± the researchers conclude.

Author: Beat H. Meier, ETH Z¨¹rich (Switzerland), http://www.ssnmr.ethz.ch/people/meierbe

Title: Infectious and Noninfectious Amyloids of the HET-s(218¨C289) Prion Have Different NMR Spectra

Angewandte Chemie International Edition, doi: 10.1002/anie.200704896

Beat H. Meier | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.ssnmr.ethz.ch/people/meierbe

Further reports about: Infectious Molecular NMR Prion Protein fibrils

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>