Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytori Selected by Fraunhofer Society to Develop New Stem Cell-based Treatments for Stroke

17.06.2008
Cytori Therapeutics (NASDAQ: CYTX) and the Fraunhofer Institute for Cell Therapy and Immunology (IZI) form collaboration to develop adipose-derived stem cell and regenerative cell-based treatments for stroke. The Fraunhofer Society will commit $425,000 over two years in support to Cytori's already planned research and development.

The goal of the collaboration is to advance adipose-derived stem and regenerative cells into clinical trials for stroke. The underlying damage in stroke is brought about by a loss of blood flow to the brain.

Because adipose-derived stem and regenerative cells have been shown to improve tissue outcome during injury resulting from a reduction in blood flow, it is believed that these cells could represent a novel approach for reducing stroke-induced damage.

"Our interest in stroke is based on several factors," said Kai Pinkernell, M.D., head of research for Cytori. "First, stroke represents a tremendous unmet medical need, whereby vascular blockages in the brain can result in loss of brain function. Second, because stroke is brought about by a loss of blood supply, we can apply what we already know about restoring blood flow and reducing tissue damage in cardiovascular disease.

... more about:
»Cytori »Stem »adipose-derived »regenerative

Third, timing is thought to be critical in the treatment of stroke and the Celution® 800 System can make a patient's own stem and regenerative cells available in real-time."

The Fraunhofer Institute for Cell Therapy and Immunology will contribute their extensive scientific expertise in neural repair. "In combining the competencies of both partners in regenerative medicine, we will have the promising opportunity to develop a novel therapeutic strategy that might have the potential to beneficially influence functional recovery following ischemic stroke." stated Dr. Johannes Boltze, head of the Neurorepair Research Group at Fraunhofer IZI.

"For this, a step-wise experimental approach including small and large animal studies adhering to the strict STAIR-criteria for stroke therapy development will be utilized." Cytori will contribute their knowledge in adipose-derived stem and regenerative cell biology as it relates to cardiovascular conditions. At the end of the two year term, Cytori will have the opportunity to advance the work into clinical trials and through to commercialization.

"This is the third grant within the last nine months for which we have the privilege to participate," added Dr. Pinkernell. "In addition to the financial support, these grants represent significant validation from government and private organizations in the US, Japan and Germany as a testament to the global interest in regenerative medicine and how adipose-derived stem and regenerative cells may play an important role. As the pioneer in this field, we look forward to working in collaboration with organizations from around the world to bring novel therapies to patients as quickly and safely as possible."

| Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de

Further reports about: Cytori Stem adipose-derived regenerative

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>