Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytori Selected by Fraunhofer Society to Develop New Stem Cell-based Treatments for Stroke

17.06.2008
Cytori Therapeutics (NASDAQ: CYTX) and the Fraunhofer Institute for Cell Therapy and Immunology (IZI) form collaboration to develop adipose-derived stem cell and regenerative cell-based treatments for stroke. The Fraunhofer Society will commit $425,000 over two years in support to Cytori's already planned research and development.

The goal of the collaboration is to advance adipose-derived stem and regenerative cells into clinical trials for stroke. The underlying damage in stroke is brought about by a loss of blood flow to the brain.

Because adipose-derived stem and regenerative cells have been shown to improve tissue outcome during injury resulting from a reduction in blood flow, it is believed that these cells could represent a novel approach for reducing stroke-induced damage.

"Our interest in stroke is based on several factors," said Kai Pinkernell, M.D., head of research for Cytori. "First, stroke represents a tremendous unmet medical need, whereby vascular blockages in the brain can result in loss of brain function. Second, because stroke is brought about by a loss of blood supply, we can apply what we already know about restoring blood flow and reducing tissue damage in cardiovascular disease.

... more about:
»Cytori »Stem »adipose-derived »regenerative

Third, timing is thought to be critical in the treatment of stroke and the Celution® 800 System can make a patient's own stem and regenerative cells available in real-time."

The Fraunhofer Institute for Cell Therapy and Immunology will contribute their extensive scientific expertise in neural repair. "In combining the competencies of both partners in regenerative medicine, we will have the promising opportunity to develop a novel therapeutic strategy that might have the potential to beneficially influence functional recovery following ischemic stroke." stated Dr. Johannes Boltze, head of the Neurorepair Research Group at Fraunhofer IZI.

"For this, a step-wise experimental approach including small and large animal studies adhering to the strict STAIR-criteria for stroke therapy development will be utilized." Cytori will contribute their knowledge in adipose-derived stem and regenerative cell biology as it relates to cardiovascular conditions. At the end of the two year term, Cytori will have the opportunity to advance the work into clinical trials and through to commercialization.

"This is the third grant within the last nine months for which we have the privilege to participate," added Dr. Pinkernell. "In addition to the financial support, these grants represent significant validation from government and private organizations in the US, Japan and Germany as a testament to the global interest in regenerative medicine and how adipose-derived stem and regenerative cells may play an important role. As the pioneer in this field, we look forward to working in collaboration with organizations from around the world to bring novel therapies to patients as quickly and safely as possible."

| Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de

Further reports about: Cytori Stem adipose-derived regenerative

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>